

The JWT Handbook

Sebastián E. Peyrott, Auth0 Inc.

Version 0.13.0, 2016-2017

Contents

Special Thanks 4

1 Introduction 5
1.1 What is a JSON Web Token? . 5
1.2 What problem does it solve? . 6
1.3 A little bit of history . 6

2 Practical Applications 8
2.1 Client-side/Stateless Sessions . 8

2.1.1 Security Considerations . 9
2.1.1.1 Signature Stripping . 9
2.1.1.2 Cross-Site Request Forgery (CSRF) 10
2.1.1.3 Cross-Site Scripting (XSS) . 11

2.1.2 Are Client-Side Sessions Useful? . 13
2.1.3 Example . 13

2.2 Federated Identity . 16
2.2.1 Access and Refresh Tokens . 18
2.2.2 JWTs and OAuth2 . 19
2.2.3 JWTs and OpenID Connect . 20

2.2.3.1 OpenID Connect Flows and JWTs 20
2.2.4 Example . 20

2.2.4.1 Setting up Auth0 Lock for Node.js Applications 21

3 JSON Web Tokens in Detail 23
3.1 The Header . 24
3.2 The Payload . 25

3.2.1 Registered Claims . 25
3.2.2 Public and Private Claims . 26

3.3 Unsecured JWTs . 27
3.4 Creating an Unsecured JWT . 27

3.4.1 Sample Code . 28
3.5 Parsing an Unsecured JWT . 28

3.5.1 Sample Code . 29

1

4 JSON Web Signatures 30
4.1 Structure of a Signed JWT . 30

4.1.1 Algorithm Overview for Compact Serialization 32
4.1.2 Practical Aspects of Signing Algorithms . 33
4.1.3 JWS Header Claims . 36
4.1.4 JWS JSON Serialization . 36

4.1.4.1 Flattened JWS JSON Serialization 38
4.2 Signing and Validating Tokens . 38

4.2.1 HS256: HMAC + SHA-256 . 39
4.2.2 RS256: RSASSA + SHA256 . 39
4.2.3 ES256: ECDSA using P-256 and SHA-256 . 40

5 JSON Web Encryption (JWE) 41
5.1 Structure of an Encrypted JWT . 44

5.1.1 Key Encryption Algorithms . 45
5.1.1.1 Key Management Modes . 46
5.1.1.2 Content Encryption Key (CEK) and JWE Encryption Key 47

5.1.2 Content Encryption Algorithms . 48
5.1.3 The Header . 48
5.1.4 Algorithm Overview for Compact Serialization 49
5.1.5 JWE JSON Serialization . 50

5.1.5.1 Flattened JWE JSON Serialization 52
5.2 Encrypting and Decrypting Tokens . 52

5.2.1 Introduction: Managing Keys with node-jose 52
5.2.2 AES-128 Key Wrap (Key) + AES-128 GCM (Content) 54
5.2.3 RSAES-OAEP (Key) + AES-128 CBC + SHA-256 (Content) 54
5.2.4 ECDH-ES P-256 (Key) + AES-128 GCM (Content) 55
5.2.5 Nested JWT: ECDSA using P-256 and SHA-256 (Signature) + RSAES-

OAEP (Encrypted Key) + AES-128 CBC + SHA-256 (Encrypted Content) . 55
5.2.6 Decryption . 56

6 JSON Web Keys (JWK) 58
6.1 Structure of a JSON Web Key . 59

6.1.1 JSON Web Key Set . 60

7 JSON Web Algorithms 61
7.1 General Algorithms . 61

7.1.1 Base64 . 61
7.1.1.1 Base64-URL . 63
7.1.1.2 Sample Code . 63

7.1.2 SHA . 64
7.2 Signing Algorithms . 69

7.2.1 HMAC . 69
7.2.1.1 HMAC + SHA256 (HS256) . 71

7.2.2 RSA . 73
7.2.2.1 Choosing e, d and n . 75
7.2.2.2 Basic Signing . 76

2

7.2.2.3 RS256: RSASSA PKCS1 v1.5 using SHA-256 76
7.2.2.3.1 Algorithm . 76

7.2.2.3.1.1 EMSA-PKCS1-v1_5 primitive 78
7.2.2.3.1.2 OS2IP primitive . 79
7.2.2.3.1.3 RSASP1 primitive 79
7.2.2.3.1.4 RSAVP1 primitive 80
7.2.2.3.1.5 I2OSP primitive . 80

7.2.2.3.2 Sample code . 81
7.2.2.4 PS256: RSASSA-PSS using SHA-256 and MGF1 with SHA-256 . . 86

7.2.2.4.1 Algorithm . 86
7.2.2.4.1.1 MGF1: the mask generation function 87
7.2.2.4.1.2 EMSA-PSS-ENCODE primitive 88
7.2.2.4.1.3 EMSA-PSS-VERIFY primitive 89

7.2.2.4.2 Sample code . 91
7.2.3 Elliptic Curve . 94

7.2.3.1 Elliptic-Curve Arithmetic . 96
7.2.3.1.1 Point Addition . 96
7.2.3.1.2 Point Doubling . 97
7.2.3.1.3 Scalar Multiplication . 97

7.2.3.2 Elliptic-Curve Digital Signature Algorithm (ECDSA) 98
7.2.3.2.1 Elliptic-Curve Domain Parameters 100
7.2.3.2.2 Public and Private Keys 101

7.2.3.2.2.1 The Discrete Logarithm Problem 101
7.2.3.2.3 ES256: ECDSA using P-256 and SHA-256 101

7.3 Future Updates . 104

3

Special Thanks

In no special order: Prosper Otemuyiwa (for providing the federated identity example from
chapter 2), Diego Poza (for reviewing this work and keeping my hands free while I worked on it),
Matías Woloski (for reviewing the hard parts of this work), Martín Gontovnikas (for putting
up with my requests and doing everything to make work amenable), Bárbara Mercedes Muñoz
Cruzado (for making everything look nice), Alejo Fernández and Víctor Fernández (for doing
the frontend and backend work to distribute this handbook), Sergio Fruto (for going out of his
way to help teammates), Federico Jack (for keeping everything running and still finding the time
to listen to each and everyone).

4

Chapter 1

Introduction

JSON Web Token, or JWT (“jot”) for short, is a standard for safely passing claims in space
constrained environments. It has found its way into all1 major2 web3 frameworks4. Simplicity,
compactness and usability are key features of its architecture. Although much more complex sys-
tems5 are still in use, JWTs have a broad range of applications. In this little handbook, we will
cover the most important aspects of the architecture of JWTs, including their binary representation
and the algorithms used to construct them, while also taking a look at how they are commonly
used in the industry.

1.1 What is a JSON Web Token?

A JSON Web Token looks like this (newlines inserted for readability):

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.
TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

While this looks like gibberish, it is actually a very compact, printable representation of a series
of claims, along with a signature to verify its authenticity.

{
"alg": "HS256",
"typ": "JWT"

}

{
1https://github.com/auth0/express-jwt
2https://github.com/nsarno/knock
3https://github.com/tymondesigns/jwt-auth
4https://github.com/jpadilla/django-jwt-auth
5https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language

5

https://github.com/auth0/express-jwt
https://github.com/nsarno/knock
https://github.com/tymondesigns/jwt-auth
https://github.com/jpadilla/django-jwt-auth
https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language

"sub": "1234567890",
"name": "John Doe",
"admin": true

}

Claims are definitions or assertions made about a certain party or object. Some of these claims
and their meaning are defined as part of the JWT spec. Others are user defined. The magic
behind JWTs is that they standardize certain claims that are useful in the context of some common
operations. For example, one of these common operations is establishing the identity of certain
party. So one of the standard claims found in JWTs is the sub (from “subject”) claim. We will take
a deeper look at each of the standard claims in chapter 3.

Another key aspect of JWTs is the possiblity of signing them, using JSON Web Signatures (JWS,
RFC 75156), and/or encrypting them, using JSON Web Encryption (JWE, RFC 75167). Together
with JWS and JWE, JWTs provide a powerful, secure solution to many different problems.

1.2 What problem does it solve?

Although the main purpose of JWTs is to transfer claims between two parties, arguably the most
important aspect of this is the standardization effort in the form of a simple, optionally validated
and/or encrypted, container format. Ad hoc solutions to this same problem have been implemented
both privately and publicly in the past. Older standards8 for establishing claims about certain
parties are also available. What JWT brings to the table is a simple, useful, standard container
format.

Although the definition given is a bit abstract so far, it is not hard to imagine how they can be used:
login systems (although other uses are possible). We will take a closer look at practical applications
in chapter 2. Some of these applications include:

• Authentication
• Authorization
• Federated identity
• Client-side sessions (“stateless” sessions)
• Client-side secrets

1.3 A little bit of history

The JSON Object Signing and Encryption group (JOSE) was formed in the year 20119. The
group’s objective was to “standardize the mechanism for integrity protection (signature and MAC)
and encryption as well as the format for keys and algorithm identifiers to support interoperability of
security services for protocols that use JSON”. By year 2013 a series of drafts, including a cookbook

6https://tools.ietf.org/html/rfc7515
7https://tools.ietf.org/html/rfc7516
8https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
9https://datatracker.ietf.org/wg/jose/history/

6

https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
https://datatracker.ietf.org/wg/jose/history/

with different examples of the use of the ideas produced by the group, were available. These drafts
would later become the JWT, JWS, JWE, JWK and JWA RFCs. As of year 2016, these RFCs
are in the standards track process and errata have not been found in them. The group is currently
inactive.

The main authors behind the specs are Mike Jones10, Nat Sakimura11, John Bradley12 and Joe
Hildebrand13.

10http://self-issued.info/
11https://nat.sakimura.org/
12https://www.linkedin.com/in/ve7jtb
13https://www.linkedin.com/in/hildjj

7

http://self-issued.info/
https://nat.sakimura.org/
https://www.linkedin.com/in/ve7jtb
https://www.linkedin.com/in/hildjj

Chapter 2

Practical Applications

Before taking a deep dive into the structure and construction of a JWT, we will take a look at
several practical applications. This chapter will give you a sense of the complexity (or simplicity)
of common JWT-based solutions used in the industry today. All code is available from public
repositories1 for your convenience. Be aware that the following demonstrations are not meant to be
used in production. Test cases, logging, and security best practices are all essential for production-
ready code. These samples are for educational purposes only and thus remain simple and to the
point.

2.1 Client-side/Stateless Sessions

The so-called stateless sessions are in fact nothing more than client-side data. The key aspect of
this application lies in the use of signing and possibly encryption to authenticate and protect the
contents of the session. Client-side data is subject to tampering. As such it must be handled with
great care by the backend.

JWTs, by virtue of JWS and JWE, can provide various types of signatures and encryption. Sig-
natures are useful to validate the data against tampering. Encryption is useful to protect the data
from being read by third parties.

Most of the time sessions need only be signed. In other words, there is no security or privacy
concern when data stored in them is read by third parties. A common example of a claim that
can usually be safely read by third parties is the sub claim (“subject”). The subject claim usually
identifies one of the parties to the other (think of user IDs or emails). It is not a requirement that
this claim be unique. In other words, additional claims may be required to uniquely identify a user.
This is left to the users to decide.

A claim that may not be appropriately left in the open could be an “items” claim representing a
user’s shopping cart. This cart might be filled with items that the user is about to purchase and

1https://github.com/auth0/jwt-handbook-samples

8

https://github.com/auth0/jwt-handbook-samples

thus are associated to his or her session. A third party (a client-side script) might be able to harvest
these items if they are stored in an unencrypted JWT, which could raise privacy concerns.

Figure 2.1: Client-side Signed Data

2.1.1 Security Considerations

2.1.1.1 Signature Stripping

A common method for attacking a signed JWT is to simply remove the signature. Signed JWTs
are constructed from three different parts: the header, the payload, and the signature. These three
parts are encoded separately. As such, it is possible to remove the signature and then change the
header to claim the JWT is unsigned. Careless use of certain JWT validation libraries can result in
unsigned tokens being taken as valid tokens, which may allow an attacker to modify the payload at
his or her discretion. This is easily solved by making sure that the application that performs the
validation does not consider unsigned JWTs valid.

9

Figure 2.2: Signature Stripping

2.1.1.2 Cross-Site Request Forgery (CSRF)

Cross-site request forgery attacks attempt to perform requests against sites where the user is logged
in by tricking the user’s browser into sending a request from a different site. To accomplish this,
a specially crafted site (or item) must contain the URL to the target. A common example is an
 tag embedded in a malicious page with the src pointing to the attack’s target. For instance:

<!-- This is embedded in another domain's site -->

The above tag will send a request to target.site.com every time the page that contains it
is loaded. If the user had previously logged in to target.site.com and the site used a cookie to
keep the session active, this cookie will be sent as well. If the target site does not implement any
CSRF mitigation techniques, the request will be handled as a valid request on behalf of the user.
JWTs, like any other client-side data, can be stored as cookies.

10

Figure 2.3: Cross-Site Request Forgery

Short-lived JWTs can help in this case. Common CSRF mitigation techniques include special
headers that are added to requests only when they are performed from the right origin, per session
cookies, and per request tokens. If JWTs (and session data) are not stored as cookies, CSRF attacks
are not possible. Cross-site scripting attacks are still possible, though.

2.1.1.3 Cross-Site Scripting (XSS)

Cross-site scripting (XSS) attacks attempt to inject JavaScript in trusted sites. Injected JavaScript
can then steal tokens from cookies and local storage. If an access token is leaked before it expires, a
malicious user could use it to access protected resources. Common XSS attacks are usually caused
by improper validation of data passed to the backend (in similar fashion to SQL injection attacks).

An example of a XSS attack could be related to the comments section of a public site. Every time
a user adds a comment, it is stored by the backend and displayed to users who load the comments
section. If the backend does not sanitize the comments, a malicious user could write a comment in
such a way that it could be interpreted by the browser as a <script> tag. So, a malicious user could
insert arbitrary JavaScript code and execute it in every user’s browser, thus, stealing credentials
stored as cookies and in local storage.

11

Figure 2.4: Persistent Cross Site Scripting

Figure 2.5: Reflective Cross Site Scripting

12

Mitigation techniques rely on proper validation of all data passed to the backend. In particular,
any data received from clients must always be sanitized. If cookies are used, it is possible to protect
them from being accessed by JavaScript by setting the HttpOnly flag2. The HttpOnly flag, while
useful, will not protect the cookie from CSRF attacks.

2.1.2 Are Client-Side Sessions Useful?

There are pros and cons to any approach, and client-side sessions are not an exception3. Some
applications may require big sessions. Sending this state back and forth for every request (or group
of requests) can easily overcome the benefits of the reduced chattiness in the backend. A certain
balance between client-side data and database lookups in the backend is necessary. This depends
on the data model of your application. Some applications do not map well to client-side sessions.
Others may depend entirely on client-side data. The final word on this matter is your own! Run
benchmarks, study the benefits of keeping certain state client-side. Are the JWTs too big? Does
this have an impact on bandwidth? Does this added bandwidth overthrow the reduced latency in
the backend? Can small requests be aggregated into a single bigger request? Do these requests
still require big database lookups? Answering these questions will help you decide on the right
approach.

2.1.3 Example

For our example we will make a simple shopping application. The user’s shopping cart will be
stored client-side. In this example, there are multiple JWTs present. Our shopping cart will be one
of them.

• One JWT for the ID token, a token that carries the user’s profile information, useful for the
UI.

• One JWT for interacting with the API backend (the access token).
• One JWT for our client-side state: the shopping cart.

Here’s how the shopping cart looks when decoded:

{
"items": [
0,
2,
4

],
"iat": 1493139659,
"exp": 1493143259

}

Each item is identified by a numeric ID. The encoded and signed JWT looks like:
2https://www.owasp.org/index.php/HttpOnly
3https://auth0.com/blog/stateless-auth-for-stateful-minds/

13

https://www.owasp.org/index.php/HttpOnly
https://auth0.com/blog/stateless-auth-for-stateful-minds/

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJpdGVtcyI6WzAsMiw0XSwiaWF0IjoxNDkzMTM5NjU5LCJleHAiOjE0OTMxNDMyNTl9.
932ZxtZzy1qhLXs932hd04J58Ihbg5_g_rIrj-Z16Js

To render the items in the cart, the frontend only needs to retrieve it from its cookie:

function populateCart() {
const cartElem = $('#cart');
cartElem.empty();

const cartToken = Cookies.get('cart');
if(!cartToken) {

return;
}

const cart = jwt_decode(cartToken).items;

cart.forEach(itemId => {
const name = items.find(item => item.id == itemId).name;
cartElem.append(`${name}`);

});
}

Note that the frontend does not check the signature, it simply decodes the JWT so it can display
its contents. The actual checks are performed by the backend. All JWTs are verified.

Here is the backend check for the validity of the cart JWT implemented as an Express middleware:

function cartValidator(req, res, next) {
if(!req.cookies.cart) {

req.cart = { items: [] };
} else {

try {
req.cart = {

items: jwt.verify(req.cookies.cart,
process.env.AUTH0_CART_SECRET,
cartVerifyJwtOptions).items

};
} catch(e) {

req.cart = { items: [] };
}

}

next();
}

When items are added, the backend constructs a new JWT with the new item in it and a new
signature:

app.get('/protected/add_item', idValidator, cartValidator, (req, res) => {

14

req.cart.items.push(parseInt(req.query.id));

const newCart = jwt.sign(req.cart,
process.env.AUTH0_CART_SECRET,
cartSignJwtOptions);

res.cookie('cart', newCart, {
maxAge: 1000 * 60 * 60

});

res.end();

console.log(`Item ID ${req.query.id} added to cart.`);
});

Note that locations prefixed by /protected are also protected by the API access token. This is
setup using express-jwt:

app.use('/protected', expressJwt({
secret: jwksClient.expressJwtSecret(jwksOpts),
issuer: process.env.AUTH0_API_ISSUER,
audience: process.env.AUTH0_API_AUDIENCE,
requestProperty: 'accessToken',
getToken: req => {

return req.cookies['access_token'];
}

}));

In other words, the /protected/add_item endpoint must first pass the access token validation step
before validating the cart. One token validates access (authorization) to the API and the other
token validates the integrity of the client side data (the cart).

The access token and the ID token are assigned by Auth0 to our application. This requires setting
up a client4 and an API endpoint5 using the Auth0 dashboard6. These are then retrieved using the
Auth0 JavaScript library, called by our frontend:

//Auth0 Client ID
const clientId = "t42WY87weXzepAdUlwMiHYRBQj9qWVAT";
//Auth0 Domain
const domain = "speyrott.auth0.com";

const auth0 = new window.auth0.WebAuth({
domain: domain,
clientID: clientId,
audience: '/protected',

4https://manage.auth0.com/#/clients
5https://manage.auth0.com/#/apis
6https://manage.auth0.com

15

https://manage.auth0.com/#/clients
https://manage.auth0.com/#/apis
https://manage.auth0.com

scope: 'openid profile purchase',
responseType: 'id_token token',
redirectUri: 'http://localhost:3000/auth/',
responseMode: 'form_post'

});

//(...)

$('#login-button').on('click', function(event) {
auth0.authorize();

});

The audience claim must match the one setup for your API endpoint using the Auth0 dashboard.

The Auth0 authentication and authorization server displays a login screen with our settings and
then redirects back to our application at a specific path with the tokens we requested. These are
handled by our backend which simply sets them as cookies:

app.post('/auth', (req, res) => {
res.cookie('access_token', req.body.access_token, {

httpOnly: true,
maxAge: req.body.expires_in * 1000

});
res.cookie('id_token', req.body.id_token, {

maxAge: req.body.expires_in * 1000
});
res.redirect('/');

});

Implementing CSRF mitigation techniques is left as an exercise for the reader. The full example
for this code can be found in the samples/stateless-sessions directory.

2.2 Federated Identity

Federated identity7 systems allow different, possibly unrelated, parties to share authentication and
authorization services with other parties. In other words, a user’s identity is centralized. There are
several solutions for federated identity management: SAML8 and OpenID Connect9 are two of the
most common ones. Certain companies provide specialized products that centralize authentication
and authorization. These may implement one of the standards mentioned above or use something
completely different. Some of these companies use JWTs for this purpose.

The use of JWTs for centralized authentication and authorization varies from company to company,
but the essential flow of the authorization process is:

7https://auth0.com/blog/2015/09/23/what-is-and-how-does-single-sign-on-work/
8http://saml.xml.org/saml-specifications
9https://openid.net/connect/

16

https://auth0.com/blog/2015/09/23/what-is-and-how-does-single-sign-on-work/
http://saml.xml.org/saml-specifications
https://openid.net/connect/

Figure 2.6: Common Federated Identity Flow

1. The user attempts to access a resource controlled by a server.
2. The user does not have the proper credentials to access the resource, so the server redirects

the user to the authorization server. The authorization server is configured to let users log-in
using the credentials managed by an identity provider.

3. The user gets redirected by the authorization server to the identity’s provider log-in screen.
4. The user logs-in successfully and gets redirected to the authorization server. The authorization

server uses the credentials provided by the identity provider to access the credentials required
by the resource server.

5. The user gets redirected to the resource server by the authorization server. The request now
has the correct credentials required to access the resource.

6. The user gets access to the resource successfully.

All the data passed from server to server flows through the user by being embedded in the redirection
requests (usually as part of the URL). This makes transport security (TLS) and data security
essential.

The credentials returned from the authorization server to the user can be encoded as a JWT. If the
authorization server allows logins through an identity provider (as is the case in this example), the
authorization server can be said to be providing a unified interface and unified data (the JWT) to
the user.

For our example later in this section, we will use Auth0 as the authorization server and handle
logins through Twitter, Facebook, and a run-of-the-mill user database.

17

2.2.1 Access and Refresh Tokens

Access and refresh tokens are two types of tokens you will see a lot when analyzing different federated
identity solutions. We will briefly explain what they are and how they help in the context of
authentication and authorization.

Both concepts are usually implemented in the context of the OAuth2 specification10. The OAuth2
spec defines a series of steps necessary to provide access to resources by separating access from
ownership (in other words, it allows several parties with different access levels to access the same
resource). Several parts of these steps are implementation defined. That is, competing OAuth2
implementations may not be interoperable. For instance, the actual binary format of the tokens is
not specified. Their purpose and functionality is.

Access tokens are tokens that give those who have them access to protected resources. These
tokens are usually short-lived and may have an expiration date embedded in them. They may also
carry or be associated with additional information (for instance, an access token may carry the IP
address from which requests are allowed). This additional data is implementation defined.

Refresh tokens, on the other hand, allow clients to request new access tokens. For instance,
after an access token has expired, a client may perform a request for a new access token to the
authorization server. For this request to be satisfied, a refresh token is required. In contrast to
access tokens, refresh tokens are usually long-lived.

10https://tools.ietf.org/html/rfc6749#section-1.4

18

https://tools.ietf.org/html/rfc6749#section-1.4

Figure 2.7: Refresh and access tokens

The key aspect of the separation between access and refresh tokens lies in the possibility of making
access tokens easy to validate. An access token that carries a signature (such as a signed JWT)
may be validated by the resource server on its own. There is no need to contact the authorization
server for this purpose.

Refresh tokens, on the other hand, require access to the authorization server. By keeping validation
separate from queries to the authorization server, better latency and less complex access patterns
are possible. Appropriate security in case of token leaks is achieved by making access tokens as
short-lived as possible and embedding additional checks (such as client checks) into them.

Refresh tokens, by virtue of being long-lived, must be protected from leaks. In the event of a leak,
blacklisting may be necessary in the server (short-lived access tokens force refresh tokens to be used
eventually, thus protecting the resource after it gets blacklisted and all access tokens are expired).

Note: the concepts of access token and refresh token were introduced in OAuth2. OAuth
1.0 and 1.0a use the word token differently.

2.2.2 JWTs and OAuth2

Although OAuth2 makes no mention of the format of its tokens, JWTs are a good match for its
requirements. Signed JWTs make good access tokens, as they can encode all the necessary data

19

to differentiate access levels to a resource, can carry an expiration date, and are signed to avoid
validation queries against the authorization server. Several federated identity providers issue access
tokens in JWT format.

JWTs may also be used for refresh tokens. There is less reason to use them for this purpose, though.
As refresh tokens require access to the authorization server, most of the time a simple UUID will
suffice, as there is no need for the token to carry a payload (it may be signed, though).

2.2.3 JWTs and OpenID Connect

OpenID Connect11 is a standardization effort to bring typical use cases of OAuth2 under a common,
well-defined spec. As many details behind OAuth2 are left to the choice of implementers, OpenID
Connect attempts to provide proper definitions for the missing parts. Specifically, OpenID Connect
defines an API and data format to perform OAuth2 authorization flows. Additionally, it provides
an authentication layer built on top of this flow. The data format chosen for some of its parts is
JSON Web Token. In particular, the ID token12 is a special type of token that carries information
about the authenticated user.

2.2.3.1 OpenID Connect Flows and JWTs

OpenID Connect defines several flows which return data in different ways. Some of this data may
be in JWT format.

• Authorization flow: the client requests an authorization code to the authorization endpoint
(/authorize). This code can be used againt the token endpoint (/token) to request an ID
token (in JWT format), an access token or a refresh token.

• Implicit flow: the client requests tokens directly from the authorization endpoint
(/authorize). The tokens are specified in the request. If an ID token is requested, is is
returned in JWT format.

• Hybrid flow: the client requests both an authorization code and certain tokens from the
authorization endpoint (/authorize). If an ID token is requested, it is returned in JWT
format. If an ID token is not requested at this step, it may later by requested directly from
the token endpoint (/token).

2.2.4 Example

For this example we will use Auth013 as the authorization server. Auth0 allows for different identity
providers to be set dinamically. In other words, whenever a user attempts to login, changes made in
the authorization server may allow users to login with different identity providers (such as Twitter,
Facebook, etc). Applications need not commit to specific providers once deployed. So our example

11https://openid.net/connect/
12http://openid.net/specs/openid-connect-core-1_0.html#IDToken
13https://auth0.com

20

https://openid.net/connect/
http://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://auth0.com

can be quite simple. We set up the Auth0 login screen using the Auth0.js library14 in all of our
sample servers. Once a user logs in to one server, he will also have access to the other servers (even
if they are not interconnected).

Figure 2.8: Auth0 as Authorization Server

2.2.4.1 Setting up Auth0 Lock for Node.js Applications

Setting up the Auth0 library15 can be done as follows. We will use the same example used for the
stateless sessions example:

const auth0 = new window.auth0.WebAuth({
domain: domain,
clientID: clientId,
audience: 'app1.com/protected',
scope: 'openid profile purchase',
responseType: 'id_token token',
redirectUri: 'http://app1.com:3000/auth/',
responseMode: 'form_post'

});

// (...)

14https://github.com/auth0/auth0.js
15https://github.com/auth0/auth0.js

21

https://github.com/auth0/auth0.js
https://github.com/auth0/auth0.js

$('#login-button').on('click', function(event) {
auth0.authorize({

prompt: 'none'
});

});

Note the use of the prompt: 'none' parameter for the authorize call. The authorize call redi-
rects the user to the authorization server. With the none parameter, if the user has already given
authorization for an app to use his or her credentials for access to a protected resource, the autho-
rization server will simply redirect back to the application. This looks to the user as if he were
already logged-in in the app.

In our example, there are two apps: app1.com and app2.com. Once a user has authorized both
apps (which happens only once: the first time the user logs-in), any subsequent logins to any of
both apps will also allow the other app to login without presenting any login screens.

To test this, see the README file for the example located in the
samples/single-sign-on-federated-identity directory to set up both applications and run
them. Once both are running, go to app1.com:300016 and app2.com:300117 and login. Then logout
from both apps. Now attempt to login to one of them. Then go back to the other one and login.
You will notice the login screen will be absent in both apps. The authorization server remembers
previous logins and can issue new access tokens when requested by any of those apps. Thus, as
long as the user has an authorization server session, he or she is already logged-in to both apps.

Implementing CSRF mitigation techniques is left as en exercise for the reader.

16http://app1.com:3000
17http://app2.com:3001

22

http://app1.com:3000
http://app2.com:3001

Chapter 3

JSON Web Tokens in Detail

As described in chapter 1, all JWTs are constructed from three different elements: the header, the
payload, and the signature/encryption data. The first two elements are JSON objects of a certain
structure. The third is dependent on the algorithm used for signing or encryption, and, in the case
of unencrypted JWTs it is omitted. JWTs can be encoded in a compact representation known as
JWS/JWE Compact Serialization.

The JWS and JWE specifications define a third serialization format known as JSON
Serialization, a non-compact representation that allows for multiple signatures or recip-
ients in the same JWT. Is is explained in detail in chapters 4 and 5.

The compact serialization is a Base641 URL-safe encoding of the UTF-82 bytes of the first two
JSON elements (the header and the payload) and the data, as required, for signing or encryption
(which is not a JSON object itself). This data is Base64-URL encoded as well. These three elements
are separated by dots (“.”).

JWT uses a variant of Base64 encoding that is safe for URLs. This encoding basically
substitutes the “+” and “/” characters for the “-” and “_” characters, respectively.
Padding is removed as well. This variant is known as base64url3. Note that all references
to Base64 encoding in this document refer to this variant.

The resulting sequence is a printable string like the following (newlines inserted for readability):

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.
TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

Notice the dots separating the three elements of the JWT (in order: the header, the payload, and
the signature).

In this example the decoded header is:
1https://en.wikipedia.org/wiki/Base64
2https://en.wikipedia.org/wiki/UTF-8
3https://tools.ietf.org/html/rfc4648#section-5

23

https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/UTF-8
https://tools.ietf.org/html/rfc4648#section-5

{
"alg": "HS256",
"typ": "JWT"

}

The decoded payload is:

{
"sub": "1234567890",
"name": "John Doe",
"admin": true

}

And the secret required for verifying the signature is secret.

JWT.io4 is an interactive playground for learning more about JWTs. Copy the token
from above and see what happens when you edit it.

3.1 The Header

Every JWT carries a header (also known as the JOSE header) with claims about itself. These
claims establish the algorithms used, whether the JWT is signed or encrypted, and in general, how
to parse the rest of the JWT.

According to the type of JWT in question, more fields may be mandatory in the header. For instance,
encrypted JWTs carry information about the cryptographic algorithms used for key encryption and
content encryption. These fields are not present for unencrypted JWTs.

The only mandatory claim for an unencrypted JWT header is the alg claim:

• alg: the main algorithm in use for signing and/or decrypting this JWT.

For unencrypted JWTs this claim must be set to the value none.

Optional header claims include the typ and cty claims:

• typ: the media type5 of the JWT itself. This parameter is only meant to be used as a help
for uses where JWTs may be mixed with other objects carrying a JOSE header. In practice,
this rarely happens. When present, this claim should be set to the value JWT.

• cty: the content type. Most JWTs carry specific claims plus arbitrary data as part of their
payload. For this case, the content type claim must not be set. For instances where the
payload is a JWT itself (a nested JWT), this claim must be present and carry the value JWT.
This tells the implementation that further processing of the nested JWT is required. Nested
JWTs are rare, so the cty claim is rarely present in headers.

So, for unencrypted JWTs, the header is simply:
4https://jwt.io
5http://www.iana.org/assignments/media-types/media-types.xhtml

24

https://jwt.io
http://www.iana.org/assignments/media-types/media-types.xhtml

{
"alg": "none"

}

which gets encoded to:

eyJhbGciOiJub25lIn0

It is possible to add additional, user-defined claims to the header. This is generally of
limited use, unless certain user-specific metadata is required in the case of encrypted
JWTs before decryption.

3.2 The Payload

{
"sub": "1234567890",
"name": "John Doe",
"admin": true

}

The payload is the element where all the interesting user data is usually added. In addition, certain
claims defined in the spec may also be present. Just like the header, the payload is a JSON
object. No claims are mandatory, although specific claims have a definite meaning. The JWT spec
specifies that claims that are not understood by an implementation should be ignored. The claims
with specific meanings attached to them are known as registered claims.

3.2.1 Registered Claims

• iss: from the word issuer. A case-sensitive string or URI that uniquely identifies the party
that issued the JWT. Its interpretation is application specific (there is no central authority
managing issuers).

• sub: from the word subject. A case-sensitive string or URI that uniquely identifies the party
that this JWT carries information about. In other words, the claims contained in this JWT
are statements about this party. The JWT spec specifies that this claim must be unique in
the context of the issuer or, in cases where that is not possible, globally unique. Handling of
this claim is application specific.

• aud: from the word audience. Either a single case-sensitive string or URI or an array of such
values that uniquely identify the intended recipients of this JWT. In other words, when this
claim is present, the party reading the data in this JWT must find itself in the aud claim or
disregard the data contained in the JWT. As in the case of the iss and sub claims, this claim
is application specific.

• exp: from the word expiration (time). A number representing a specific date and time in the
format “seconds since epoch” as defined by POSIX6. This claims sets the exact moment from

6http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_15

25

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_15

which this JWT is considered invalid. Some implementations may allow for a certain skew
between clocks (by considering this JWT to be valid for a few minutes after the expiration
date).

• nbf : from not before (time). The opposite of the exp claim. A number representing a specific
date and time in the format “seconds since epoch” as defined by POSIX7. This claim sets
the exact moment from which this JWT is considered valid. The current time and date must
be equal to or later than this date and time. Some implementations may allow for a certain
skew.

• iat: from issued at (time). A number representing a specific date and time (in the same
format as exp and nbf) at which this JWT was issued.

• jti: from JWT ID. A string representing a unique identifier for this JWT. This claim may be
used to differentiate JWTs with other similar content (preventing replays, for instance). It is
up to the implementation to guarantee uniqueness.

As you may have noticed, all names are short. This complies with one of the design requirements:
to keep JWTs as small as possible.

String or URI: according to the JWT spec, a URI is interpreted as any string containing
a : character. It is up to the implementation to provide valid values.

3.2.2 Public and Private Claims

All claims that are not part of the registered claims section are either private or public claims.

• Private claims: are those that are defined by users (consumers and producers) of the JWTs.
In other words, these are ad hoc claims used for a particular case. As such, care must be
taken to prevent collisions.

• Public claims: are claims that are either registered with the IANA JSON Web Token Claims
registry8 (a registry where users can register their claims and thus prevent collisions), or named
using a collision resistant name (for instance, by prepending a namespace to its name).

In practice, most claims are either registered claims or private claims. In general, most JWTs are
issued with a specific purpose and a clear set of potential users in mind. This makes the matter of
picking collision resistant names simple.

Just as in the JSON parsing rules, duplicate claims (duplicate JSON keys) are handled by keeping
only the last occurrence as the valid one. The JWT spec also makes it possible for implementations
to consider JWTs with duplicate claims as invalid. In practice, if you are not sure about the
implementation that will handle your JWTs, take care to avoid duplicate claims.

7http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_15
8https://tools.ietf.org/html/rfc7519#section-10.1

26

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_15
https://tools.ietf.org/html/rfc7519#section-10.1

3.3 Unsecured JWTs

With what we have learned so far, it is possible to construct unsecured JWTs. These are the
simplest JWTs, formed by a simple (usually static) header:

{
"alg": "none"

}

and a user defined payload. For instance:

{
"sub": "user123",
"session": "ch72gsb320000udocl363eofy",
"name": "Pretty Name",
"lastpage": "/views/settings"

}

As there is no signature or encryption, this JWT is encoded as simply two elements (newlines
inserted for readability):

eyJhbGciOiJub25lIn0.
eyJzdWIiOiJ1c2VyMTIzIiwic2Vzc2lvbiI6ImNoNzJnc2IzMjAwMDB1ZG9jbDM2M
2VvZnkiLCJuYW1lIjoiUHJldHR5IE5hbWUiLCJsYXN0cGFnZSI6Ii92aWV3cy9zZXR0aW5ncyJ9.

An unsecured JWT like the one shown above may be fit for client-side use. For instance, if the session
ID is a hard-to-guess number, and the rest of the data is only used by the client for constructing a
view, the use of a signature is superfluous. This data can be used by a single-page web application
to construct a view with the “pretty” name for the user without hitting the backend while he gets
redirected to his last visited page. Even if a malicious user were to modify this data he or she would
gain nothing.

Note the trailing dot (.) in the compact representation. As there is no signature, it is
simply an empty string. The dot is still added, though.

In practice, however, unsecured JWTs are rare.

3.4 Creating an Unsecured JWT

To arrive at the compact representation from the JSON versions of the header and the payload,
perform the following steps:

1. Take the header as a byte array of its UTF-8 representation. The JWT spec does not require
the JSON to be minified or stripped of meaningless characters (such as whitespace) before
encoding.

2. Encode the byte array using the Base64-URL algorithm, removing trailing equal signs (=).
3. Take the payload as a byte array of its UTF-8 representation. The JWT spec does not require

the JSON to be minified or stripped of meaningless characters (such as whitespace) before
encoding.

27

4. Encode the byte array using the Base64-URL algorithm, removing trailing equal signs (=).
5. Concatenate the resulting strings, putting first the header, followed by a “.” character,

followed by the payload.

Validation of both the header and the payload (with respect to the presence of required claims and
the correct use of each claim) must be performed before encoding.

Figure 3.1: Compact Unsecured JWT Generation

3.4.1 Sample Code

// URL-safe variant of Base64
function b64(str) {

return new Buffer(str).toString('base64')
.replace(/=/g, '')
.replace(/\+/g, '-')
.replace(/\//g, '_');

}

function encode(h, p) {
const headerEnc = b64(JSON.stringify(h));
const payloadEnc = b64(JSON.stringify(p));
return `${headerEnc}.${payloadEnc}`;

}

The full example is in file coding.js of the accompanying sample code.

3.5 Parsing an Unsecured JWT

To arrive at the JSON representation from the compact serialization form, perform the following
steps:

1. Find the first period “.” character. Take the string before it (not including it.)

28

2. Decode the string using the Base64-URL algorithm. The result is the JWT header.
3. Take the string after the period from step 1.
4. Decode the string using the Base64-URL algorithm. The result is the JWT payload.

The resulting JSON strings may be “prettified” by adding whitespace as necessary.

3.5.1 Sample Code

function decode(jwt) {
const [headerB64, payloadB64] = jwt.split('.');
// These supports parsing the URL safe variant of Base64 as well.
const headerStr = new Buffer(headerB64, 'base64').toString();
const payloadStr = new Buffer(payloadB64, 'base64').toString();
return {

header: JSON.parse(headerStr),
payload: JSON.parse(payloadStr)

};
}

The full example is in file coding.js of the accompanying sample code.

29

Chapter 4

JSON Web Signatures

JSON Web Signatures are probably the single most useful feature of JWTs. By combining a simple
data format with a well-defined series of signature algorithms, JWTs are quickly becoming the ideal
format for safely sharing data between clients and intermediaries.

The purpose of a signature is to allow one or more parties to establish the authenticity of the JWT.
Authenticity in this context means the data contained in the JWT has not been tampered with. In
other words, any party that can perform a signature check can rely on the contents provided by
the JWT. It is important to stress that a signature does not prevent other parties from reading the
contents inside the JWT. This is what encryption is meant to do, and we will talk about that later
in chapter 5.

The process of checking the signature of a JWT is known as validation or validating a token. A
token is considered valid when all the restrictions specified in its header and payload are satisfied.
This is a very important aspect of JWTs: implementations are required to check a JWT up to the
point specified by both its header and its payload (and, additionally, whatever the user requires).
So, a JWT may be considered valid even if it lacks a signature (if the header has the alg claim
set to none). Additionally, even if a JWT has a valid signature, it may be considered invalid for
other reasons (for instance, it may have expired, according to the exp claim). A common attack
against signed JWTs relies on stripping the signature and then changing the header to make it an
unsecured JWT. It is the responsibility of the user to make sure JWTs are validated according to
their own requirements.

Signed JWTs are defined in the JSON Web Signature spec, RFC 75151.

4.1 Structure of a Signed JWT

We have covered the structure of a JWT in chapter 3. We will review it here and take special note
of its signature component.

1https://tools.ietf.org/html/rfc7515

30

https://tools.ietf.org/html/rfc7515

A signed JWT is composed of three elements: the header, the payload, and the signature (newlines
inserted for readability):

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.
TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

The process for decoding the first two elements (the header and the payload) is identical to the case
of unsecured JWTs. The algorithm and sample code can be found at the end of chapter 3.

{
"alg": "HS256",
"typ": "JWT"

}

{
"sub": "1234567890",
"name": "John Doe",
"admin": true

}

Signed JWTs, however, carry an additional element: the signature. This element appears after the
last dot (.) in the compact serialization form.

There are several types of signing algorithms available according to the JWS spec, so the way these
octets are interpreted varies. The JWS specification requires a single algorithm to be supported by
all conforming implementations:

• HMAC using SHA-256, called HS256 in the JWA spec.

The specification also defines a series of recommended algorithms:

• RSASSA PKCS1 v1.5 using SHA-256, called RS256 in the JWA spec.
• ECDSA using P-256 and SHA-256, called ES256 in the JWA spec.

JWA is the JSON Web Algorithms spec, RFC 75182.

These algorithms will be explained in detail in chapter 7. In this chapter, we will focus on the
practical aspects of their use.

The other algorithms supported by the spec, in optional capacity, are:

• HS384, HS512: SHA-384 and SHA-512 variations of the HS256 algorithm.
• RS384, RS512: SHA-384 and SHA-512 variations of the RS256 algorithm.
• ES384, ES512: SHA-384 and SHA-512 variations of the ES256 algorithm.
• PS256, PS384, PS512: RSASSA-PSS + MGF1 with SHA256/384/512 variants.

These are, essentially, variations of the three main required and recommended algorithms. The
meaning of these acronyms will become clearer in chapter 7.

2https://tools.ietf.org/html/rfc7518

31

https://tools.ietf.org/html/rfc7518

4.1.1 Algorithm Overview for Compact Serialization

In order to discuss these algorithms in general, let’s first define some functions in a JavaScript 2015
environment:

• base64: a function that receives an array of octets and returns a new array of octets using
the Base64-URL algorithm.

• utf8: a function that receives text in any encoding and returns an array of octets with UTF-8
encoding.

• JSON.stringify: a function that takes a JavaScript object and serializes it to string form
(JSON).

• sha256: a function that takes an array of octets and returns a new array of octets using the
SHA-256 algorithm.

• hmac: a function that takes a SHA function, an array of octets and a secret and returns a
new array of octets using the HMAC algorithm.

• rsassa: a function that takes a SHA function, an array of octets and the private key and
returns a new array of octets using the RSASSA algorithm.

For HMAC-based signing algorithms:

const encodedHeader = base64(utf8(JSON.stringify(header)));
const encodedPayload = base64(utf8(JSON.stringify(payload)));
const signature = base64(hmac(`${encodedHeader}.${encodedPayload}`,

secret, sha256));
const jwt = `${encodedHeader}.${encodedPayload}.${signature}`;

For public-key signing algorithms:

const encodedHeader = base64(utf8(JSON.stringify(header)));
const encodedPayload = base64(utf8(JSON.stringify(payload)));
const signature = base64(rsassa(`${encodedHeader}.${encodedPayload}`,

privateKey, sha256));
const jwt = `${encodedHeader}.${encodedPayload}.${signature}`;

32

Figure 4.1: JWS Compact Serialization

The full details of these algorithms are shown in chapter 7.

4.1.2 Practical Aspects of Signing Algorithms

All signing algorithms accomplish the same thing: they provide a way to establish the authenticity
of the data contained in the JWT. How they do that varies.

Keyed-Hash Message Authentication Code (HMAC) is an algorithm that combines a certain payload
with a secret using a cryptographic hash function3. The result is a code that can be used to verify a
message only if both the generating and verifying parties know the secret. In other words, HMACs
allow messages to be verified through shared secrets.

The cryptographic hash function used in HS256, the most common signing algorithm for JWTs, is
SHA-256. SHA-256 is explained in detail in chapter 7. Cryptographic hash functions take a message
of arbitrary length and produce an output of fixed length. The same message will always produce
the same output. The cryptographic part of a hash function makes sure that it is mathematically
infeasible to recover the original message from the output of the function. In this way, cryptographic
hash functions are one-way functions that can be used to identify messages without actually sharing
the message. A slight variation in the message (a single byte, for instance) will produce an entirely
different output.

RSASSA is a variation of the RSA algorithm4 (explained in chapter 7) adapted for signatures. RSA
is a public-key algorithm. Public-key algorithms generate split keys: one public key and one private

3https://en.wikipedia.org/wiki/Cryptographic_hash_function
4https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29

33

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29

key. In this specific variation of the algorithm, the private key can be used both to create a signed
message and to verify its authenticity. The public key, in contrast, can only be used to verify the
authenticity of a message. Thus, this scheme allows for the secure distribution of a one-to-many
message. Receiving parties can verify the authenticity of a message by keeping a copy of the public
key associated with it, but they cannot create new messages with it. This allows for different usage
scenarios than shared-secret signing schemes such as HMAC. With HMAC + SHA-256, any party
that can verify a message can also create new messages. For example, if a legitimate user turned
malicious, he or she could modify messages without the other parties noticing. With a public-key
scheme, a user who turned malicious would only have the public key in his or her possession and
so could not create new signed messages with it.

Figure 4.2: One-to-many signing

34

Public-key cryptography5 allows for other usage scenarios. For instance, using a variation of the
same RSA algorithm, it is possible to encrypt messages by using the public key. These messages
can only be decrypted using the private key. This allows a many-to-one secure communications
channel to be constructed. This variation is used for encrypted JWTs, which are discussed in

<div id="chapter5"></div>

Figure 4.3: Many-to-one encryption

Elliptic Curve Digital Signature Algorithm (ECDSA)6 is an alternative to RSA. This algorithm
also generates a public and private key pair, but the mathematics behind it are different. This
difference allows for lesser hardware requirements than RSA for similar security guarantees.

We will study these algorithms in more detail in chapter 7.
5https://en.wikipedia.org/wiki/Public-key_cryptography
6https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

35

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

4.1.3 JWS Header Claims

JWS allows for special use cases that force the header to carry more claims. For instance, for
public-key signing algorithms, it is possible to embed the URL to the public key as a claim. What
follows is the list of registered header claims available for JWS tokens. All of these claims are in
addition to those available for unsecured JWTs, and are optional depending on how the signed JWT
is meant to be used.

• jku: JSON Web Key (JWK) Set URL. A URI pointing to a set of JSON-encoded public keys
used to sign this JWT. Transport security (such as TLS for HTTP) must be used to retrieve
the keys. The format of the keys is a JWK Set (see chapter 6).

• jwk: JSON Web Key. The key used to sign this JWT in JSON Web Key format (see chapter
6).

• kid: Key ID. A user-defined string representing a single key used to sign this JWT. This
claim is used to signal key signature changes to recipients (when multiple keys are used).

• x5u: X.509 URL. A URI pointing to a set of X.509 (a certificate format standard) public
certificates encoded in PEM form. The first certificate in the set must be the one used to
sign this JWT. The subsequent certificates each sign the previous one, thus completing the
certificate chain. X.509 is defined in RFC 52807. Transport security is required to transfer
the certificates.

• x5c: X.509 certificate chain. A JSON array of X.509 certificates used to sign this JWS. Each
certificate must be the Base64-encoded value of its DER PKIX representation. The first
certificate in the array must be the one used to sign this JWT, followed by the rest of the
certificates in the certificate chain.

• x5t: X.509 certificate SHA-1 fingerprint. The SHA-1 fingerprint of the X.509 DER-encoded
certificate used to sign this JWT.

• x5t#S256: Identical to x5t, but uses SHA-256 instead of SHA-1.

• typ: Identical to the typ value for unencrypted JWTs, with additional values “JOSE” and
“JOSE+JSON” used to indicate compact serialization and JSON serialization, respectively.
This is only used in cases where similar JOSE-header carrying objects are mixed with this
JWT in a single container.

• crit: from critical. An array of strings with the names of claims that are present in this same
header used as implementation-defined extensions that must be handled by parsers of this
JWT. It must either contain the names of claims or not be present (the empty array is not a
valid value).

4.1.4 JWS JSON Serialization

The JWS spec defines a different type of serialization format that is not compact. This representa-
tion allows for multiple signatures in the same signed JWT. It is known as JWS JSON Serialization.

7https://tools.ietf.org/html/rfc5280

36

https://tools.ietf.org/html/rfc5280

In JWS JSON Serialization form, signed JWTs are represented as printable text with JSON format
(i.e., what you would get from calling JSON.stringify in a browser). A topmost JSON object that
carries the following key-value pairs is required:

• payload: a Base64 encoded string of the actual JWT payload object.
• signatures: an array of JSON objects carrying the signatures. These objects are defined

below.

In turn, each JSON object inside the signatures array must contain the following key-value pairs:

• protected: a Base64 encoded string of the JWS header. Claims contained in this header are
protected by the signature. This header is required only if there are no unprotected headers.
If unprotected headers are present, then this header may or may not be present.

• header: a JSON object containing header claims. This header is unprotected by the signature.
If no protected header is present, then this element is mandatory. If a protected header is
present, then this element is optional.

• signature: A Base64 encoded string of the JWS signature.

In contrast to compact serialization form (where only a protected header is present), JSON serializa-
tion admits two types of headers: protected and unprotected. The protected header is validated
by the signature. The unprotected header is not validated by it. It is up to the implementation or
user to pick which claims to put in either of them. At least one of these headers must be present.
Both may be present at the same time as well.

When both protected and unprotected headers are present, the actual JOSE header is built from
the union of the elements in both headers. No duplicate claims may be present.

The following example is taken from the JWS RFC8:

{
"payload": "eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogIm

h0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ",
"signatures": [
{
"protected": "eyJhbGciOiJSUzI1NiJ9",
"header": { "kid": "2010-12-29" },
"signature":
"cC4hiUPoj9Eetdgtv3hF80EGrhuB__dzERat0XF9g2VtQgr9PJbu3XOiZj5RZmh7AA
uHIm4Bh-0Qc_lF5YKt_O8W2Fp5jujGbds9uJdbF9CUAr7t1dnZcAcQjbKBYNX4BAyn
RFdiuB--f_nZLgrnbyTyWzO5vRK5h6xBArLIARNPvkSjtQBMHlb1L07Qe7K0GarZRmB
_eSN9383LcOLn6_dO--xi12jzDwusC-eOkHWEsqtFZESc6BfI7noOPqvhJ1phCnvWh6
IeYI2w9QOYEUipUTI8np6LbgGY9Fs98rqVt5AXLIhWkWywlVmtVrBp0igcN_IoypGlU
PQGe77Rw"

},
{
"protected": "eyJhbGciOiJFUzI1NiJ9",
"header": { "kid": "e9bc097a-ce51-4036-9562-d2ade882db0d" },

8https://tools.ietf.org/html/rfc7515#appendix-A.6

37

https://tools.ietf.org/html/rfc7515#appendix-A.6

"signature": "DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmXFCgfTjDx
w5djxLa8ISlSApmWQxfKTUJqPP3-Kg6NU1Q"

}
]

}

This example encodes two signatures for the same payload: a RS256 signature and an ES256
signature.

4.1.4.1 Flattened JWS JSON Serialization

JWS JSON serialization defines a simplified form for JWTs with only a single signature. This form
is known as flattened JWS JSON serialization. Flattened serialization removes the signatures array
and puts the elements of a single signature at the same level as the payload element.

For example, by removing one of the signatures from the previous example, a flattened JSON
serialization object would be:

{
"payload": "eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQog

Imh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ",
"protected": "eyJhbGciOiJFUzI1NiJ9",
"header": { "kid": "e9bc097a-ce51-4036-9562-d2ade882db0d" },
"signature": "DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmXFC

gfTjDxw5djxLa8ISlSApmWQxfKTUJqPP3-Kg6NU1Q"
}

4.2 Signing and Validating Tokens

The algorithms used for signing and validating tokens are explained in detail in chapter 7. Using
signed JWTs is simple enough in practice that you could apply the concepts explained so far to use
them effectively. Furthermore, there are good libraries you can use to implement them conveniently.
We will go over the required and recommended algorithms using the most popular of these libraries
for JavaScript. Examples of other popular languages and libraries can be found in the accompanying
code.

The following examples all make use of the popular jsonwebtoken JavaScript library.

import jwt from 'jsonwebtoken'; //var jwt = require('jsonwebtoken');

const payload = {
sub: "1234567890",
name: "John Doe",
admin: true

};

38

4.2.1 HS256: HMAC + SHA-256

HMAC signatures require a shared secret. Any string will do:

const secret = 'my-secret';

const signed = jwt.sign(payload, secret, {
algorithm: 'HS256',
expiresIn: '5s' // if ommited, the token will not expire

});

Verifying the token is just as easy:

const decoded = jwt.verify(signed, secret, {
// Never forget to make this explicit to prevent
// signature stripping attacks
algorithms: ['HS256'],

});

The jsonwebtoken library checks the validity of the token based on the signature and the expiration
date. In this case, if the token were to be checked after 5 seconds of being created, it would be
considered invalid and an exception would be thrown.

4.2.2 RS256: RSASSA + SHA256

Signing and verifying RS256 signed tokens is just as easy. The only difference lies in the use of
a private/public key pair rather than a shared secret. There are many ways to create RSA keys.
OpenSSL is one of the most popular libraries for key creation and management:

Generate a private key
openssl genpkey -algorithm RSA -out private_key.pem -pkeyopt rsa_keygen_bits:2048
Derive the public key from the private key
openssl rsa -pubout -in private_key.pem -out public_key.pem

Both PEM files are simple text files. Their contents can be copied and pasted into your JavaScript
source files and passed to the jsonwebtoken library.

// You can get this from private_key.pem above.
const privateRsaKey = `<YOUR-PRIVATE-RSA-KEY>`;

const signed = jwt.sign(payload, privateRsaKey, {
algorithm: 'RS256',
expiresIn: '5s'

});

// You can get this from public_key.pem above.
const publicRsaKey = `<YOUR-PUBLIC-RSA-KEY>`;

const decoded = jwt.verify(signed, publicRsaKey, {

39

// Never forget to make this explicit to prevent
// signature stripping attacks.
algorithms: ['RS256'],

});

4.2.3 ES256: ECDSA using P-256 and SHA-256

ECDSA algorithms also make use of public keys. The math behind the algorithm is different,
though, so the steps to generate the keys are different as well. The “P-256” in the name of this
algorithm tells us exactly which version of the algorithm to use (more details about this in chapter
7). We can use OpenSSL to generate the key as well:

Generate a private key (prime256v1 is the name of the parameters used
to generate the key, this is the same as P-256 in the JWA spec).
openssl ecparam -name prime256v1 -genkey -noout -out ecdsa_private_key.pem
Derive the public key from the private key
openssl ec -in ecdsa_private_key.pem -pubout -out ecdsa_public_key.pem

If you open these files you will note that there is much less data in them. This is one of the benefits
of ECDSA over RSA (more about this in chapter 7). The generated files are in PEM format as
well, so simply pasting them in your source will suffice.

// You can get this from private_key.pem above.
const privateEcdsaKey = `<YOUR-PRIVATE-ECDSA-KEY>`;

const signed = jwt.sign(payload, privateEcdsaKey, {
algorithm: 'ES256',
expiresIn: '5s'

});

// You can get this from public_key.pem above.
const publicEcdsaKey = `<YOUR-PUBLIC-ECDSA-KEY>`;

const decoded = jwt.verify(signed, publicEcdsaKey, {
// Never forget to make this explicit to prevent
// signature stripping attacks.
algorithms: ['ES256'],

});

Refer to chapter 2 for practical applications of these algorithms in the context of JWTs.

40

Chapter 5

JSON Web Encryption (JWE)

While JSON Web Signature (JWS) provides a means to validate data, JSON Web Encryption
(JWE) provides a way to keep data opaque to third parties. Opaque in this case means unreadable.
Encrypted tokens cannot be inspected by third parties. This allows for additional interesting use
cases.

Although it would appear that encryption provides the same guarantees as validation, with the
additional feature of making data unreadable, this is not always the case. To understand why, first
it is important to note that just as in JWS, JWE essentially provides two schemes: a shared secret
scheme, and a public/private-key scheme.

The shared secret scheme works by having all parties know a shared secret. Each party that holds
the shared secret can both encrypt and decrypt information. This is analogous to the case of a
shared secret in JWS: parties holding the secret can both verify and generate signed tokens.

The public/private-key scheme, however, works differently. While in JWS the party holding the
private key can sign and verify tokens, and the parties holding the public key can only verify those
tokens, in JWE the party holding the private key is the only party that can decrypt the token. In
other words, public-key holders can encrypt data, but only the party holding the private-key can
decrypt (and encrypt) that data. In practice, this means that in JWE, parties holding the public
key can introduce new data into an exchange. In contrast, in JWS, parties holding the public-key
can only verify data but not introduce new data. In straightforward terms, JWE does not provide
the same guarantees as JWS and, therefore, does not replace the role of JWS in a token exchange.
JWS and JWE are complementary when public/private key schemes are being used.

A simpler way to understand this is to think in terms of producers and consumers. The producer
either signs or encrypts the data, so consumers can either validate it or decrypt it. In the case of
JWT signatures, the private-key is used to sign JWTs, while the public-key can be used to validate
it. The producer holds the private-key and the consumers hold the public-key. Data can only flow
from private-key holders to public-key holders. In contrast, for JWT encryption, the public-key is
used to encrypt the data and the private-key to decrypt it. In this case, the data can only flow from
public-key holders to private-key holders - public-key holders are the producers and private-key
holders are the consumers:

41

JWS JWE
Producer Private-key Public-key
Consumer Public-key Private-key

42

Figure 5.1: Signing vs encryption using public-key cryptography

At this point some people may ask:

43

In the case of JWE, couldn’t we distribute the private-key to every party that wants to
send data to a consumer? Thus if a consumer can decrypt the data, he or she can be
sure that it is also valid (because one cannot change data that cannot be decrypted).

Technically, it would be possible, but it wouldn’t make sense. Sharing the private-key is equivalent
to sharing the secret. So sharing the private-key in essence turns the scheme into a shared secret
scheme, without the actual benefits of public-keys (remember public-keys can be derived from
private-keys).

For this reason encrypted JWTs are sometimes nested: an encrypted JWT serves as the container
for a signed JWT. This way you get the benefits of both.

Note that all of this applies in situations where consumers are different entities from
producers. If the producer is the same entity that consumes the data, then a shared-
secret encrypted JWT provides the same guarantees as an encrypted and signed JWT.

JWE encrypted JWTs, regardless of having a nested signed JWT in them or not, carry
an authentication tag. This tag allows JWE JWTs to be validated. However, due to the
issues mentioned above, this signature does not apply for the same use cases as JWS
signatures. The purpose of this tag is to prevent padding oracle attacks1 or ciphertext
manipulation.

5.1 Structure of an Encrypted JWT

In contrast to signed and unsecured JWTs, encrypted JWTs have a different compact representation
(newlines inserted for readability):

eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0.
UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlIKOK1nN94nHPoltGRhWhw7Zx0-kFm1NJn8LE9XShH59_
i8J0PH5ZZyNfGy2xGdULU7sHNF6Gp2vPLgNZ__deLKxGHZ7PcHALUzoOegEI-8E66jX2E4zyJKx-
YxzZIItRzC5hlRirb6Y5Cl_p-ko3YvkkysZIFNPccxRU7qve1WYPxqbb2Yw8kZqa2rMWI5ng8Otv
zlV7elprCbuPhcCdZ6XDP0_F8rkXds2vE4X-ncOIM8hAYHHi29NX0mcKiRaD0-D-ljQTP-
cFPgwCp6X-nZZd9OHBv-B3oWh2TbqmScqXMR4gp_A.
AxY8DCtDaGlsbGljb3RoZQ.
KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY.
9hH0vgRfYgPnAHOd8stkvw

Although it may be hard to see in the example above, JWE Compact Serialization has five elements.
As in the case of JWS, these elements are separated by dots, and the data contained in them is
Base64-encoded.

The five elements of the compact representation are, in order:

1. The protected header: a header analogous to the JWS header.
2. The encrypted key: a symmetric key used to encrypt the ciphertext and other encrypted

data. This key is derived from the actual encryption key specified by the user and thus is
encrypted by it.

1https://en.wikipedia.org/wiki/Padding_oracle_attack

44

https://en.wikipedia.org/wiki/Padding_oracle_attack

3. The initialization vector: some encryption algorithms require additional (usually random)
data.

4. The encrypted data (ciphertext): the actual data that is being encrypted.
5. The authentication tag: additional data produced by the algorithms that can be used to

validate the contents of the ciphertext against tampering.

As in the case of JWS and single signatures in the compact serialization, JWE supports a single
encryption key in its compact form.

Using a symmetric key to perform the actual encryption process is a common practice
when using asymmetric encryption (public/private-key encryption). Asymmetric en-
cryption algorithms are usually of high computational complexity, and thus encrypting
long sequences of data (the ciphertext) is suboptimal. One way to exploit the benefits
of both symmetric (faster) and asymmetric encryption is to generate a random key for a
symmetric encryption algorithm, then encrypt that key with the asymmetric algorithm.
This is the second element shown above, the encrypted key.

Some encryption algorithms can process any data passed to them. If the ciphertext
is modified (even without being decrypted), the algorithms may process it nonetheless.
The authentication tag can be used to prevent this, essentially acting as a signature.
This does not, however, remove the need for the nested JWTs explained above.

5.1.1 Key Encryption Algorithms

Having an encrypted encryption key means there are two encryption algorithms at play in the same
JWT. The following are the encryption algorithms available for key encryption:

• RSA variants: RSAES PKCS #1 v1.5 (RSAES-PKCS1-v1_5), RSAES OAEP and OAEP
+ MGF1 + SHA-256.

• AES variants: AES Key Wrap from 128 to 256-bits, AES Galois Counter Mode (GCM)
from 128 to 256-bits.

• Elliptic Curve variants: Elliptic Curve Diffie-Hellman Ephemeral Static key agreement
using concat KDF, and variants pre-wrapping the key with any of the non-GCM AES variants
above.

• PKCS #5 variants: PBES2 (password based encryption) + HMAC (SHA-256 to 512) +
non-GCM AES variants from 128 to 256-bits.

• Direct: no encryption for the encryption key (direct use of CEK).

None of these algorithms are actually required by the JWA specification. The following are the
recommended (to be implemented) algorithms by the specification:

• RSAES-PKCS1-v1_5 (marked for removal of the recommendation in the future)
• RSAES-OAEP with defaults (marked to become required in the future)
• AES-128 Key Wrap
• AES-256 Key Wrap
• Elliptic Curve Diffie-Hellman Ephemeral Static (ECDH-ES) using Concat KDF

(marked to become required in the future)
• ECDH-ES + AES-128 Key Wrap

45

• ECDH-ES + AES-256 Key Wrap

Some of these algorithms require additional header parameters.

5.1.1.1 Key Management Modes

The JWE specification defines different key management modes. These are, in essence, ways in
which the key used to encrypt the payload is determined. In particular, the JWE spec describes
these modes of key management:

• Key Wrapping: the Content Encryption Key (CEK) is encrypted for the intended recipient
using a symmetric encryption algorithm.

Figure 5.2: Key wrapping

• Key Encryption: the CEK is encrypted for the intended recipient using an asymmetric
encryption algorithm.

Figure 5.3: Key encryption

• Direct Key Agreement: a key agreement algorithm is used to pick the CEK.

46

Figure 5.4: Direct key agreement

• Key Agreement with Key Wrapping: a key agreement algorithm is used to pick a
symmetric CEK using a symmetric encryption algorithm.

Figure 5.5: Direct key agreement

• Direct Encryption: a user-defined symmetric shared key is used as the CEK (no key deriva-
tion or generation).

Figure 5.6: Direct key agreement

Although this constitutes a matter of terminology, it is important to understand the differences
between each management mode and give each one of them a convenient name.

5.1.1.2 Content Encryption Key (CEK) and JWE Encryption Key

It is also important to understand the difference between the CEK and the JWE Encryption Key.
The CEK is the actual key used to encrypt the payload: an encryption algorithm takes the CEK
and the plaintext to produce the ciphertext. In contrast, the JWE Encryption Key is either the
encrypted form of the CEK or an empty octet sequence (as required by the chosen algorithm). An

47

empty JWE Encryption Key means the algorithm makes use of an externally provided key to either
directly decrypt the data (Direct Encryption) or compute the actual CEK (Direct Key Agreement).

5.1.2 Content Encryption Algorithms

The following are the content encryption algorithms, that is, the ones used to actually encrypt the
payload:

• AES CBC + HMAC SHA: AES 128 to 256-bits with Cipher Block Chaining and HMAC
+ SHA-256 to 512 for validation.

• AES GCM: AES 128 to 256 using Galois Counter Mode.

Of these, only two are required: AES-128 CBC + HMAC SHA-256, and AES-256 CBC + HMAC
SHA-512. The AES-128 and AES-256 variants using GCM are recommended.

These algorithms are explained in detail in chapter 7.

5.1.3 The Header

Just like the header for JWS and unsecured JWTs, the header carries all the necessary information
for the JWT to be correctly processed by libraries. The JWE specification adapts the meanings of
the registered claims defined in JWS to its own use, and adds a few claims of its own. These are
the new and modified claims:

• alg: identical to JWS, except it defines the algorithm to be used to encrypt and decrypt the
Content Encryption Key (CEK). In other words, this algorithm is used to encrypt the actual
key that is later used to encrypt the content.

• enc: the name of the algorithm used to encrypt the content using the CEK.

• zip: a compression algorithm to be applied to the encrypted data before encryption. This
parameter is optional. When it is absent, no compression is performed. A usual value for this
is DEF, the common deflate algorithm2.

• jku: identical to JWS, except in this case the claim points to the public-key used to encrypt
the CEK.

• jkw: identical to JWS, except in this case the claim points to the public-key used to encrypt
the CEK.

• kid: identical to JWS, except in this case the claim points to the public-key used to encrypt
the CEK.

• x5u: identical to JWS, except in this case the claim points to the public-key used to encrypt
the CEK.

• x5c: identical to JWS, except in this case the claim points to the public-key used to encrypt
the CEK.

2https://tools.ietf.org/html/rfc1951

48

https://tools.ietf.org/html/rfc1951

• x5t: identical to JWS, except in this case the claim points to the public-key used to encrypt
the CEK.

• x5t#S256: identical to JWS, except in this case the claim points to the public-key used to
encrypt the CEK.

• typ: identical to JWS.

• cty: identical to JWS, except this is the type of the encrypted content.

• crit: identical to JWS, except it refers to the parameters of this header.

Additional parameters may be required, depending on the encryption algorithms in use. You will
find these explained in the section discussing each algorithm.

5.1.4 Algorithm Overview for Compact Serialization

At the beginning of this chapter, JWE Compact Serialization was mentioned briefly. It is basically
composed of five elements encoded in printable-text form and separated by dots (.). The basic
algorithm to construct a compact serialization JWE JWT is:

1. If required by the chosen algorithm (alg claim), generate a random number of the required
size. It is essential to comply with certain cryptographic requirements for randomness when
generating this value. Refer to RFC 40863 or use a cryptographically validated random
number generator.

2. Determine the Content Encryption Key according to the key management mode4:
• For Direct Key Agreement: use the key agreement algorithm and the random number

to compute the Content Encryption Key (CEK).
• For Key Agreement with Key Wrapping: use the key agreement algorithm with

the random number to compute the key that will be used to wrap the CEK.
• For Direct Encryption: the CEK is the symmetric key.

3. Determine the JWE Encrypted Key according to the key management mode:
• For Direct Key Agreement and Direct Encryption: the JWE Encrypted Key is

empty.
• For Key Wrapping, Key Encryption, and Key Agreement with Key Wrapping:

encrypt the CEK to the recipient. The result is the JWE Encrypted Key.
4. Compute an Initialization Vector (IV) of the size required by the chosen algorithm. If not

required, skip this step.
5. Compress the plaintext of the content, if required (zip header claim).
6. Encrypt the data using the CEK, the IV, and the Additional Authenticated Data (AAD).

The result is the encrypted content (JWE Ciphertext) and Authentication Tag. The AAD is
only used for non-compact serializations.

7. Construct the compact representation as:

base64(header) + '.' +
base64(encryptedKey) + '.' + // Steps 2 and 3

3https://tools.ietf.org/html/rfc4086
45.1.1.1

49

https://tools.ietf.org/html/rfc4086
5.1.1.1

base64(initializationVector) + '.' + // Step 4
base64(ciphertext) + '.' + // Step 6
base64(authenticationTag) // Step 6

5.1.5 JWE JSON Serialization

In addition to compact serialization, JWE also defines a non-compact JSON representation. This
representation trades size for flexibility, allowing, amongst other things, encryption of the content
for multiple recipients by using several public-keys at the same time. This is analogous to the
multiple signatures allowed by JWS JSON Serialization.

JWE JSON Serialization is the printable text encoding of a JSON object with the following mem-
bers:

• protected: Base64-encoded JSON object of the header claims to be protected (validated,
not encrypted) by this JWE JWT. Optional. At least this element or the unprotected header
must be present.

• unprotected: header claims that are not protected (validated) as a JSON object (not Base64-
encoded). Optional. At least this element or the protected header must be present.

• iv: Base64 string of the initialization vector. Optional (only present when required by the
algorithm).

• aad: Additional Authenticated Data. Base64 string of the additional data that is protected
(validated) by the encryption algorithm. If no AAD is supplied in the encryption step, this
member must be absent.

• ciphertext: Base64-encoded string of the encrypted data.

• tag: Base64 string of the authentication tag generated by the encryption algorithm.

• recipients: a JSON array of JSON objects, each containing the necessary information for
decryption by each recipient.

The following are the members of the objects in the recipients array:

• header: a JSON object of unprotected header claims. Optional.
• encrypted_key: Base64-encoded JWE Encrypted Key. Only present when a JWE En-

crypted Key is used.

The actual header used to decrypt a JWE JWT for a recipient is constructed from the union of
each header present. No repeated claims are allowed.

The format of the encrypted keys is described in chapter 6 (JSON Web Keys).

The following example is taken from RFC 7516 (JWE):

{
"protected": "eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0",
"unprotected": { "jku":"https://server.example.com/keys.jwks" },
"recipients":[

50

{
"header": { "alg":"RSA1_5","kid":"2011-04-29" },
"encrypted_key":

"UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlIKOK1nN94nHPoltGRhWhw7Zx0-
kFm1NJn8LE9XShH59_i8J0PH5ZZyNfGy2xGdULU7sHNF6Gp2vPLgNZ__deLKx
GHZ7PcHALUzoOegEI-8E66jX2E4zyJKx-YxzZIItRzC5hlRirb6Y5Cl_p-ko3
YvkkysZIFNPccxRU7qve1WYPxqbb2Yw8kZqa2rMWI5ng8OtvzlV7elprCbuPh
cCdZ6XDP0_F8rkXds2vE4X-ncOIM8hAYHHi29NX0mcKiRaD0-D-ljQTP-cFPg
wCp6X-nZZd9OHBv-B3oWh2TbqmScqXMR4gp_A"

},
{
"header": { "alg":"A128KW","kid":"7" },
"encrypted_key": "6KB707dM9YTIgHtLvtgWQ8mKwboJW3of9locizkDTHzBC2IlrT1oOQ"

}
],
"iv": "AxY8DCtDaGlsbGljb3RoZQ",
"ciphertext": "KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY",
"tag": "Mz-VPPyU4RlcuYv1IwIvzw"

}

This JSON Serialized JWE JWT carries a single payload for two recipients. The encryption algo-
rithm is AES-128 CBC + SHA-256, which you can get from the protected header:

{
"enc": "A128CBC-HS256"

}

By performing the union of all claims for each recipient, the final header for each recipient is
constructed:

First recipient:

{
"alg":"RSA1_5",
"kid":"2011-04-29",
"enc":"A128CBC-HS256",
"jku":"https://server.example.com/keys.jwks"

}

Second recipient:

{
"alg":"A128KW",
"kid":"7",
"enc":"A128CBC-HS256",
"jku":"https://server.example.com/keys.jwks"

}

51

5.1.5.1 Flattened JWE JSON Serialization

As with JWS, JWE defines a flat JSON serialization. This serialization form can only be used for
a single recipient. In this form, the recipients array is replaced by a header and encrypted_key
pair or elements (i.e., the keys of a single object of the recipients array take its place).

This is the flattened representation of the example from the previous section resulting from only
including the first recipient:

{
"protected": "eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0",
"unprotected": { "jku":"https://server.example.com/keys.jwks" },
"header": { "alg":"RSA1_5","kid":"2011-04-29" },
"encrypted_key":
"UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlIKOK1nN94nHPoltGRhWhw7Zx0-
kFm1NJn8LE9XShH59_i8J0PH5ZZyNfGy2xGdULU7sHNF6Gp2vPLgNZ__deLKx
GHZ7PcHALUzoOegEI-8E66jX2E4zyJKx-YxzZIItRzC5hlRirb6Y5Cl_p-ko3
YvkkysZIFNPccxRU7qve1WYPxqbb2Yw8kZqa2rMWI5ng8OtvzlV7elprCbuPh
cCdZ6XDP0_F8rkXds2vE4X-ncOIM8hAYHHi29NX0mcKiRaD0-D-ljQTP-cFPg
wCp6X-nZZd9OHBv-B3oWh2TbqmScqXMR4gp_A",

"iv": "AxY8DCtDaGlsbGljb3RoZQ",
"ciphertext": "KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY",
"tag": "Mz-VPPyU4RlcuYv1IwIvzw"

}

5.2 Encrypting and Decrypting Tokens

The following examples show how to perform encryption using the popular node-jose5 library. This
library is a bit more complex than jsonwebtoken (used for the JWS examples), as it covers much
more ground.

5.2.1 Introduction: Managing Keys with node-jose

For the purposes of the following examples, we will need to use encryption keys in various forms.
This is managed by node-jose through a keystore. A keystore is an object that manages
keys. We will generate and add a few keys to our keystore so that we can use them later in the
examples. You might recall from JWS examples that such an abstraction was not required for the
jsonwebtoken library. The keystore abstraction is an implementation detail of node-jose. You
may find other similar abstractions in other languages and libraries.

To create an empty keystore and add a few keys of different types:

// Create an empty keystore
const keystore = jose.JWK.createKeyStore();

5https://github.com/cisco/node-jose#basics

52

https://github.com/cisco/node-jose#basics

// Generate a few keys. You may also import keys generated from external
// sources.
const promises = [

keystore.generate('oct', 128, { kid: 'example-1' }),
keystore.generate('RSA', 2048, { kid: 'example-2' }),
keystore.generate('EC', 'P-256', { kid: 'example-3' }),

];

With node-jose, key generation is a rather simple matter. All key types usable with JWE and
JWS are supported. In this example we create three different keys: a simple AES 128-bit key, a
RSA 2048-bit key, and an Elliptic Curve key using curve P-256. These keys can be used both for
encryption and signatures. In the case of keys that support public/private-key pairs, the generated
key is the private key. To obtain the public keys, simply call:

var publicKey = key.toJSON();

The public key will be stored in JWK format.

It is also possible to import preexisting keys:

// where input is either a:
// * jose.JWK.Key instance
// * JSON Object representation of a JWK
jose.JWK.asKey(input).

then(function(result) {
// {result} is a jose.JWK.Key
// {result.keystore} is a unique jose.JWK.KeyStore

});

// where input is either a:
// * String serialization of a JSON JWK/(base64-encoded)
// PEM/(binary-encoded) DER
// * Buffer of a JSON JWK/(base64-encoded) PEM/(binary-encoded) DER
// form is either a:
// * "json" for a JSON stringified JWK
// * "pkcs8" for a DER encoded (unencrypted!) PKCS8 private key
// * "spki" for a DER encoded SPKI public key
// * "pkix" for a DER encoded PKIX X.509 certificate
// * "x509" for a DER encoded PKIX X.509 certificate
// * "pem" for a PEM encoded of PKCS8 / SPKI / PKIX
jose.JWK.asKey(input, form).

then(function(result) {
// {result} is a jose.JWK.Key
// {result.keystore} is a unique jose.JWK.KeyStore

});

53

5.2.2 AES-128 Key Wrap (Key) + AES-128 GCM (Content)

AES-128 Key Wrap and AES-128 GCM are symmetric key algorithms. This means that the same
key is required for both encryption and decryption. The key for “example-1” that we generated
before is one such key. In AES-128 Key Wrap, this key is used to wrap a randomly generated key,
which is then used to encrypt the content using the AES-128 GCM algorithm. It would also be
possible to use this key directly (Direct Encryption mode).

function encrypt(key, options, plaintext) {
return jose.JWE.createEncrypt(options, key)

.update(plaintext)

.final();
}

function a128gcm(compact) {
const key = keystore.get('example-1');
const options = {

format: compact ? 'compact' : 'general',
contentAlg: 'A128GCM'

};

return encrypt(key, options, JSON.stringify(payload));
}

The node-jose library works primarily with promises6. The object returned by a128gcm is a
promise. The createEncrypt function can encrypt whatever content is passed to it. In other
words, it is not necessary for the content to be a JWT (though most of the time it will be). It is
for this reason that JSON.stringify must be called before passing the data to that function.

5.2.3 RSAES-OAEP (Key) + AES-128 CBC + SHA-256 (Content)

The only thing that changes between invocations of the createEncrypt function are the options
passed to it. Therefore, it is just as easy to use a public/private-key pair. Rather than passing
the symmetric key to createEncrypt, one simply passes either the public or the private-key (for
encryption only the public key is required, though this one can be derived from the private key).
For readability purposes, we simply use the private key, but in practice the public key will most
likely be used in this step.

function encrypt(key, options, plaintext) {
return jose.JWE.createEncrypt(options, key)

.update(plaintext)

.final();
}

function rsa(compact) {
6https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

54

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

const key = keystore.get('example-2');
const options = {

format: compact ? 'compact' : 'general',
contentAlg: 'A128CBC-HS256'

};

return encrypt(key, options, JSON.stringify(payload));
}

contentAlg selects the actual encryption algorithm. Remember there are only two variants (with
different key sizes): AES CBC + HMAC SHA and AES GCM.

5.2.4 ECDH-ES P-256 (Key) + AES-128 GCM (Content)

The API for elliptic curves is identical to that of RSA:

function encrypt(key, options, plaintext) {
return jose.JWE.createEncrypt(options, key)

.update(plaintext)

.final();
}

function ecdhes(compact) {
const key = keystore.get('example-3');
const options = {

format: compact ? 'compact' : 'general',
contentAlg: 'A128GCM'

};

return encrypt(key, options, JSON.stringify(payload));
}

5.2.5 Nested JWT: ECDSA using P-256 and SHA-256 (Signature) +
RSAES-OAEP (Encrypted Key) + AES-128 CBC + SHA-256 (En-
crypted Content)

Nested JWTs require a bit of juggling to pass the signed JWT to the encryption function. Specif-
ically, the signature + encryption steps must be performed manually. Recall that these steps are
performed in that order: first signing, then encrypting. Although technically nothing prevents the
order from being reversed, signing the JWT first prevents the resulting token from being vulnerable
to signature removal attacks.

function nested(compact) {
const signingKey = keystore.get('example-3');
const encryptionKey = keystore.get('example-2');

55

const signingPromise = jose.JWS.createSign(signingKey)
.update(JSON.stringify(payload))
.final();

const promise = new Promise((resolve, reject) => {

signingPromise.then(result => {
const options = {

format: compact ? 'compact' : 'general',
contentAlg: 'A128CBC-HS256'

};
resolve(encrypt(encryptionKey, options, JSON.stringify(result)));

}, error => {
reject(error);

});

});

return promise;
}

As can be seen in the example above, node-jose can also be used for signing. There is nothing
precluding the use of other libraries (such as jsonwebtoken) for that purpose. However, given the
necessity of node-jose, there is no point in adding dependencies and using inconsistent APIs.

Performing the signing step first is only possible because JWE mandates authenticated
encryption. In other words, the encryption algorithm must also perform the signing
step. The reasons JWS and JWE can be combined in a useful way, in spite of JWE’s
authentication, were described at the beginning of chapter 5. For other schemes (i.e.,
for general encryption + signature), the norm is to first encrypt, then sign. This is to
prevent manipulation of the ciphertext that can result in encryption attacks. It is also
the reason that JWE mandates the presence of an authentication tag.

5.2.6 Decryption

Decryption is as simple as encryption. As with encryption, the payload must be converted between
different data formats explicitly.

// Decryption test
a128gcm(true).then(result => {

jose.JWE.createDecrypt(keystore.get('example-1'))
.decrypt(result)
.then(decrypted => {

decrypted.payload = JSON.parse(decrypted.payload);
console.log(`Decrypted result: ${JSON.stringify(decrypted)}`);

}, error => {
console.log(error);

56

});
}, error => {

console.log(error);
});

Decryption of RSA and Elliptic Curve algorithms is analogous, using the private-key rather than
the symmetric key. If you have a keystore with the right kid claims, it is possible to simply pass
the keystore to the createDecrypt function and have it search for the right key. So, any of the
examples above can be decrypted using the exact same code:

jose.JWE.createDecrypt(keystore) //just pass the keystore here
.decrypt(result)
.then(decrypted => {

decrypted.payload = JSON.parse(decrypted.payload);
console.log(`Decrypted result: ${JSON.stringify(decrypted)}`);

}, error => {
console.log(error);

});

57

Chapter 6

JSON Web Keys (JWK)

To complete the picture of JWT, JWS, and JWE we now come to the JSON Web Key (JWK) spec-
ification. This specification deals with the different representations for the keys used for signatures
and encryption. Although there are established representations for all keys, the JWK specification
aims at providing a unified representation for all keys supported in the JSON Web Algorithms
(JWA) specification. A unified representation format for keys allows easy sharing and keeps keys
independent from the intricacies of other key exchange formats.

JWS and JWE do support a different type of key format: X.509 certificates. These are quite
common and can carry more information than a JWK. X.509 certificates can be embedded in
JWKs, and JWKs can be constructed from them.

Keys are specified in different header claims. Literal JWKs are put under the jwk claim. The jku
claim, on the other hand, can point to a set of keys stored under a URL. Both of these claims are
in JWK format.

A sample JWK:

{
"kty":"EC",
"crv":"P-256",
"x":"MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",
"y":"4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",
"d":"870MB6gfuTJ4HtUnUvYMyJpr5eUZNP4Bk43bVdj3eAE",
"use":"enc",
"kid":"1"

}

58

6.1 Structure of a JSON Web Key

JSON Web Keys are simply JSON objects with a series of values that describe the parameters
required by the key. These parameters vary according to the type of key. Common parameters are:

• kty: “key type”. This claim differentiates types of keys. Supported types are EC, for elliptic
curve keys; RSA for RSA keys; and oct for symmetric keys. This claim is required.

• use: this claim specifies the intended use of the key. There are two possible uses: sig (for
signature) and enc (for encryption). This claim is optional. The same key can be used for
encryption and signatures, in which case this member should not be present.

• key_ops: an array of string values that specifies detailed uses for the key. Possible values are:
sign, verify, encrypt, decrypt, wrapKey, unwrapKey, deriveKey, deriveBits. Certain
operations should not be used together. For instance, sign and verify are appropriate for
the same key, while sign and encrypt are not. This claim is optional and should not be used
at the same time as the use claim. In cases where both are present, their content should be
consistent.

• alg: “algorithm”. The algorithm intended to be used with this key. It can be any of the
algorithms admitted for JWE or JWS operations. This claim is optional.

• kid: “key id”. A unique identifier for this key. It can be used to match a key against a kid
claim in the JWE or JWS header, or to pick a key from a set of keys according to application
logic. This claim is optional. Two keys in the same key set can carry the same kid only if
they have different kty claims and are intended for the same use.

• x5u: a URL that points to a X.509 public key certificate or certificate chain in PEM encoded
form. If other optional claims are present they must be consistent with the contents of the
certificate. This claim is optional.

• x5c: a Base64-URL encoded X.509 DER certificate or certificate chain. A certificate chain is
represented as an array of such certificates. The first certificate must be the certificate referred
by this JWK. All other claims present in this JWK must be consistent with the values of the
first certificate. This claim is optional.

• x5t: a Base64-URL encoded SHA-1 thumbprint/fingerprint of the DER encoding of a X.509
certificate. The certificate this thumbprint points to must be consistent with the claims in
this JWK. This claim is optional.

• x5t#S256: identical to the x5t claim, but with the SHA-256 thumbprint of the certificate.

Other parameters, such as x, y, or d (from the example at the opening of this chapter) are specific
to the key algorithm. RSA keys, on the other hand, carry parameters such as n, e, dp, etc. The
meaning of these parameters will become clear in chapter 7, where each key algorithm is explained
in detail.

59

6.1.1 JSON Web Key Set

The JWK spec admits groups of keys. These are known as “JWK Sets”. These sets carry more
than one key. The meaning of the keys as a group and the meaning of the order of these keys is
user defined.

A JSON Web Key Set is simply a JSON object with a keys member. This member is a JSON array
of JWKs.

Sample JWK Set:

{
"keys": [

{
"kty":"EC",
"crv":"P-256",
"x":"MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",
"y":"4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",
"use":"enc",
"kid":"1"

},

{
"kty":"RSA",
"n": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx

4cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMs
tn64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2
QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbI
SD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqb
w0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",

"e":"AQAB",
"alg":"RS256",
"kid":"2011-04-29"

}
]

}

In this example, two public-keys are available. The first one is of elliptic curve type and is limited
to encryption operations by the use claim. The second one is of RSA type and is associated with
a specific algorithm (RS256) by the alg claim. This means this second key is meant to be used for
signatures.

60

Chapter 7

JSON Web Algorithms

You have probably noted that there are many references to this chapter throughout this handbook.
The reason is that a big part of the magic behind JWTs lies in the algorithms employed with it.
Structure is important, but the many interesting uses described so far are only possible due to the
algorithms in play. This chapter will cover the most important algorithms in use with JWTs today.
Understanding them in depth is not necessary in order to use JWTs effectively, and so this chapter
is aimed at curious minds wanting to understand the last piece of the puzzle.

7.1 General Algorithms

The following algorithms have many different applications inside the JWT, JWS, and JWE specs.
Some algorithms, like Base64-URL, are used for compact and non-compact serialization forms.
Others, such as SHA-256, are used for signatures, encryption, and key fingerprints.

7.1.1 Base64

Base64 is a binary-to-text encoding algorithm. Its main purpose is to turn a sequence of octets into
a sequence of printable characters, at the cost of added size. In mathematical terms, Base64 turns
a sequence of radix-256 numbers into a sequence of radix-64 numbers. The word base can be used
in place of radix, hence the name of the algorithm.

Note: Base64 is not actually used by the JWT spec. It is the Base64-URL variant
described later in this chapter, that is used by JWT.

To understand how Base64 can turn a series of arbitrary numbers into text, it is first necessary to be
familiar with text-encoding systems. Text-encoding systems map numbers to characters. Although
this mapping is arbitrary and in the case of Base64 can be implementation defined, the de facto
standard for Base64 encoding is RFC 46481.

1https://tools.ietf.org/rfc/rfc4648.txt

61

https://tools.ietf.org/rfc/rfc4648.txt

0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 O 31 f 48 w (pad) =
15 P 32 g 49 x
16 Q 33 h 50 y

In Base64 encoding, each character represents 6 bits of the original data. Encoding is performed in
groups of four encoded characters. So, 24 bits of original data are taken together and encoded as
four Base64 characters. Since the original data is expected to be a sequence of 8-bit values, the 24
bits are formed by concatenating three 8-bit values from left to right.

Base64 encoding:

3 x 8-bit values -> 24-bit concatenated data -> 4 x 6-bit characters

Figure 7.1: Base64 encoding

62

If the number of octets in the input data is not divisible by three, then the last portion of data to
encode will have less than 24 bits of data. When this is the case, zeros are added to the concatenated
input data to form an integral number of 6-bit groups. There are three possiblities:

1. The full 24 bits are available as input; no special processing is performed.
2. 16 bits of input are available, three 6-bit values are formed, and the last 6-bit value gets extra

zeros added to the right. The resulting encoded string is padded with an extra = character to
make it explicit that 8 bits of input were missing.

3. 8 bits of input are available, two 6-bit values are formed, and the last 6-bit value gets extra
zeros added to the right. The resulting encoded string is padded with two extra = characters
to make it explicit that 16 bits of input were missing.

The padding character (=) is considered optional by some implementations. Performing the steps in
the opposite order will yield the original data, regardless of the presence of the padding characters.

7.1.1.1 Base64-URL

Certain characters from the standard Base64 conversion table are not URL-safe. Base64 is a
convenient encoding for passing arbitrary data in text fields. Since only two characters from Base64
are problematic as part of the URL, a URL-safe variant is easy to implement. The + character and
the / character are replaced by the - character and the _ character.

7.1.1.2 Sample Code

The following sample implements a dumb Base64-URL encoder. The example is written with
simplicity in mind, rather than speed.

const table = [
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J',
'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T',
'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd',
'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x',
'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', '-', '_'

];

/**
* @param input a Buffer, Uint8Array or Int8Array, Array
* @returns a String with the encoded values
*/
export function encode(input) {

let result = "";

for(let i = 0; i < input.length; i += 3) {
const remaining = input.length - i;

63

let concat = input[i] << 16;
result += (table[concat >>> (24 - 6)]);

if(remaining > 1) {
concat |= input[i + 1] << 8;
result += table[(concat >>> (24 - 12)) & 0x3F];

if(remaining > 2) {
concat |= input[i + 2];
result += table[(concat >>> (24 - 18)) & 0x3F] +

table[concat & 0x3F];
} else {

result += table[(concat >>> (24 - 18)) & 0x3F] + "=";
}

} else {
result += table[(concat >>> (24 - 12)) & 0x3F] + "==";

}
}

return result;
}

7.1.2 SHA

The Secure Hash Algorithm (SHA) used in the JWT specs is defined in FIPS-1802. It is not to
be confused with the SHA-13 family of algorithms, which have been deprecated since 2010. To
differentiate this family from the previous one, this family is sometimes called SHA-2.

The algorithms in RFC 4634 are SHA-224, SHA-256, SHA-384, and SHA-512. Of importance for
JWT are SHA-256 and SHA-512. We will focus on the SHA-256 variant and explain its differences
with regard to the other variants.

As do many hashing algorithms, SHA works by processing the input in fixed-size chunks, applying
a series of mathematical operations and then accummulating the result by performing an operation
with the previous iteration results. Once all fixed-size input chunks are processed, the digest is said
to be computed.

The SHA family of algorithms were designed to avoid collisions and produce radically different
output even when the input is only slightly changed. It is for this reason they are considered secure:
it is computationally infeasible to find collisions for different inputs, or to compute the original
input from the produced digest.

The algorithm requires a series of predefined functions:
2http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
3https://en.wikipedia.org/wiki/SHA-1

64

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://en.wikipedia.org/wiki/SHA-1

function rotr(x, n) {
return (x >>> n) | (x << (32 - n));

}

function ch(x, y, z) {
return (x & y) ^ ((~x) & z);

}

function maj(x, y, z) {
return (x & y) ^ (x & z) ^ (y & z);

}

function bsig0(x) {
return rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22);

}

function bsig1(x) {
return rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25);

}

function ssig0(x) {
return rotr(x, 7) ^ rotr(x, 18) ^ (x >>> 3);

}

function ssig1(x) {
return rotr(x, 17) ^ rotr(x, 19) ^ (x >>> 10);

}

These functions are defined in the specification. The rotr function performs bitwise rotation (to
the right).

Additionally, the algorithm requires the message to be of a predefined length (a multiple of 64);
therefore padding is required. The padding algorithm works as follows:

1. A single binary 1 is appended to the end of the original message. For example:

Original message:
01011111 01010101 10101010 00111100
Extra 1 at the end:
01011111 01010101 10101010 00111100 1

2. An N number of zeroes is appended so that the resulting length of the message is the solution
to this equation:

L = Message length in bits
0 = (65 + N + L) mod 512

3. Then the number of bits in the original message is appended as a 64-bit integer:

Original message:

65

01011111 01010101 10101010 00111100
Extra 1 at the end:
01011111 01010101 10101010 00111100 1
N zeroes:
01011111 01010101 10101010 00111100 10000000 ...0...
Padded message:
01011111 01010101 10101010 00111100 10000000 ...0... 00000000 00100000

Figure 7.2: SHA padding

A simple implementation in JavaScript could be:

function padMessage(message) {
if(!(message instanceof Uint8Array) && !(message instanceof Int8Array)) {

throw new Error("unsupported message container");
}

const bitLength = message.length * 8;
const fullLength = bitLength + 65; //Extra 1 + message size.
let paddedLength = (fullLength + (512 - fullLength % 512)) / 32;
let padded = new Uint32Array(paddedLength);

for(let i = 0; i < message.length; ++i) {
padded[Math.floor(i / 4)] |= (message[i] << (24 - (i % 4) * 8));

}

padded[Math.floor(message.length / 4)] |= (0x80 << (24 - (message.length % 4) * 8));
// TODO: support messages with bitLength longer than 2^32
padded[padded.length - 1] = bitLength;

return padded;
}

The resulting padded message is then processed in 512-bit blocks. The implementation below follows
the algorithm described in the specification step by step. All operations are performed on 32-bit
integers.

export default function sha256(message, returnBytes) {
// Initial hash values
const h_ = Uint32Array.of(

66

0x6a09e667,
0xbb67ae85,
0x3c6ef372,
0xa54ff53a,
0x510e527f,
0x9b05688c,
0x1f83d9ab,
0x5be0cd19

);

const padded = padMessage(message);
const w = new Uint32Array(64);
for(let i = 0; i < padded.length; i += 16) {

for(let t = 0; t < 16; ++t) {
w[t] = padded[i + t];

}
for(let t = 16; t < 64; ++t) {

w[t] = ssig1(w[t - 2]) + w[t - 7] + ssig0(w[t - 15]) + w[t - 16];
}

let a = h_[0] >>> 0;
let b = h_[1] >>> 0;
let c = h_[2] >>> 0;
let d = h_[3] >>> 0;
let e = h_[4] >>> 0;
let f = h_[5] >>> 0;
let g = h_[6] >>> 0;
let h = h_[7] >>> 0;

for(let t = 0; t < 64; ++t) {
let t1 = h + bsig1(e) + ch(e, f, g) + k[t] + w[t];
let t2 = bsig0(a) + maj(a, b, c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;

}

h_[0] = (a + h_[0]) >>> 0;
h_[1] = (b + h_[1]) >>> 0;
h_[2] = (c + h_[2]) >>> 0;
h_[3] = (d + h_[3]) >>> 0;

67

h_[4] = (e + h_[4]) >>> 0;
h_[5] = (f + h_[5]) >>> 0;
h_[6] = (g + h_[6]) >>> 0;
h_[7] = (h + h_[7]) >>> 0;

}

//(...)
}

The variable k holds a series of constants, which are defined in the specification.

The final result is in the variable h_[0..7]. The only missing step is to present it in readable form:

if(returnBytes) {
const result = new Uint8Array(h_.length * 4);
h_.forEach((value, index) => {

const i = index * 4;
result[i] = (value >>> 24) & 0xFF;
result[i + 1] = (value >>> 16) & 0xFF;
result[i + 2] = (value >>> 8) & 0xFF;
result[i + 3] = (value >>> 0) & 0xFF;

});

return result;
} else {

function toHex(n) {
let str = (n >>> 0).toString(16);
let result = "";
for(let i = str.length; i < 8; ++i) {

result += "0";
}
return result + str;

}
let result = "";
h_.forEach(n => {

result += toHex(n);
});
return result;

}

Although it works, note that the implementation above is not optimal (and does not support
messages longer than 232).

Other variants of the SHA-2 family (such as SHA-512) simply change the size of the block processed
in each iteration and alter the constants and their size. In particular, SHA-512 requires 64-bit math
to be available. In other words, to turn the sample implementation above into SHA-512, a separate
library for 64-bit math is required (as JavaScript only supports 32-bit bitwise operations and 64-bit
floating-point math).

68

7.2 Signing Algorithms

7.2.1 HMAC

Hash-based Message Authentication Codes (HMAC)4 make use of a cryptographic hash function
(such as the SHA family discussed above) and a key to create an authentication code for a specific
message. In other words, a HMAC-based authentication scheme takes a hash function, a message,
and a secret-key as inputs and produces an authentication code as output. The strength of the
cryptographic hash function ensures that the message cannot be modified without the secret key.
Thus, HMACs serve both purposes of authentication and data integrity.

Figure 7.3: HMAC

Weak hash functions may allow malicious users to compromise the validity of the authentication
code. Therefore, for HMACs to be of use, a strong hash function must be chosen. The SHA-
2 family of functions is still strong enough for today’s standards, but this may change in the
future. MD5, a different cryptographic hash function used extensively in the past, can be used for
HMACs. However, it can be vulnerable to collision and prefix attacks. Although these attacks do
not necessarily make MD5 unsuitable for use with HMACs, stronger algorithms are readily available
and should be considered.

The algorithm is simple enough to fit in a single line:

Let H be the cryptographic hash function
B be the block length of the hash function

4https://tools.ietf.org/html/rfc2104

69

https://tools.ietf.org/html/rfc2104

(how many bits are processed per iteration)
K be the secret key
K' be the actual key used by the HMAC algorithm
L be the length of the output of the hash function
ipad be the byte 0x36 repeated B times
opad be the byte 0x5C repeated B times
message be the input message
|| be the concatenation function

HMAC(message) = H(K' XOR opad || H(K' XOR ipad || message))

K' is computed from the secret key K as follows:

If K is shorter than B, zeroes are appended until K is of B length. The result is K'. If K is longer
than B, H is applied to K. The result is K'. If K is exactly B bytes, it is used as is (K is K').

Here is a sample implementation in JavaScript:

export default function hmac(hashFn, blockSizeBits, secret, message, returnBytes) {
if(!(message instanceof Uint8Array)) {

throw new Error('message must be of Uint8Array');
}

const blockSizeBytes = blockSizeBits / 8;

const ipad = new Uint8Array(blockSizeBytes);
const opad = new Uint8Array(blockSizeBytes);
ipad.fill(0x36);
opad.fill(0x5c);

const secretBytes = stringToUtf8(secret);
let paddedSecret;
if(secretBytes.length <= blockSizeBytes) {

const diff = blockSizeBytes - secretBytes.length;
paddedSecret = new Uint8Array(blockSizeBytes);
paddedSecret.set(secretBytes);

} else {
paddedSecret = hashFn(secretBytes);

}

const ipadSecret = ipad.map((value, index) => {
return value ^ paddedSecret[index];

});
const opadSecret = opad.map((value, index) => {

return value ^ paddedSecret[index];
});

// HMAC(message) = H(K' XOR opad || H(K' XOR ipad || message))

70

const result = hashFn(
append(opadSecret,

uint32ArrayToUint8Array(hashFn(append(ipadSecret,
message), true))),

returnBytes);

return result;
}

To verify a message against an HMAC, one simply computes the HMAC and compares the result
with the HMAC that came with the message. This requires knowledge of the secret-key by all
parties: those who produce the message, and those who only want to verify it.

7.2.1.1 HMAC + SHA256 (HS256)

Understanding Base64-URL, SHA-256, and HMAC are all that is needed to implement the HS256
signing algorithm from the JWS specification. With this is mind, we can now combine all the
sample code developed so far and construct a fully signed JWT.

export default function jwtEncode(header, payload, secret) {
if(typeof header !== 'object' || typeof payload !== 'object') {

throw new Error('header and payload must be objects');
}
if(typeof secret !== 'string') {

throw new Error("secret must be a string");
}

header.alg = 'HS256';

const encHeader = b64(JSON.stringify(header));
const encPayload = b64(JSON.stringify(payload));
const jwtUnprotected = `${encHeader}.${encPayload}`;
const signature = b64(uint32ArrayToUint8Array(

hmac(sha256, 512, secret, stringToUtf8(jwtUnprotected), true)));

return `${jwtUnprotected}.${signature}`;
}

Note that this function performs no validation of the header or payload (other than checking to see
if they are objects). You can call this function like this:

console.log(jwtEncode({}, {sub: "test@test.com"}, 'secret'));

Paste the generated JWT in JWT.io’s debugger5 and see how it gets decoded and validated.

This function is very similar to the one used in chapter 4 as a demonstration for the signing
algorithm. From chapter 4:

5https://jwt.io

71

https://jwt.io

const encodedHeader = base64(utf8(JSON.stringify(header)));
const encodedPayload = base64(utf8(JSON.stringify(payload)));
const signature = base64(hmac(`${encodedHeader}.${encodedPayload}`, secret, sha256));
const jwt = `${encodedHeader}.${encodedPayload}.${signature}`;

Verification is just as easy:

export function jwtVerifyAndDecode(jwt, secret) {
if(!isString(jwt) || !isString(secret)) {

throw new TypeError('jwt and secret must be strings');
}

const split = jwt.split('.');
if(split.length !== 3) {

throw new Error('Invalid JWT format');
}

const header = JSON.parse(unb64(split[0]));
if(header.alg !== 'HS256') {

throw new Error(`Wrong algorithm: ${header.alg}`);
}

const jwtUnprotected = `${split[0]}.${split[1]}`;
const signature =

b64(hmac(sha256, 512, secret, stringToUtf8(jwtUnprotected), true));

return {
header: header,
payload: JSON.parse(unb64(split[1])),
valid: signature == split[2]

};
}

The signature is split from the JWT and a new signature is computed. If the new signature matches
the one included in the JWT, then the signature is valid.

You can use the function above as follows:

const secret = 'secret';
const encoded = jwtEncode({}, {sub: "test@test.com"}, secret);
const decoded = jwtVerifyAndDecode(encoded, secret);

This code is available in the hs256.js file of the samples included6 with this handbook.
6https://github.com/auth0/jwt-handbook-samples

72

https://github.com/auth0/jwt-handbook-samples

7.2.2 RSA

RSA is one of the most widely used cryptosystems today. It was developed in 1977 by Ron Rivest,
Adi Shamir and Leonard Adleman, whose initials were used to name the algorithm. The key aspect
of RSA lies in its asymmetry: the key used to encrypt something is not the key used to decrypt
it. This scheme is known as public-key encryption (PKI), were the public key is the encryption key
and the private key is the decryption key.

When it comes to signatures, the private key is used to sign a piece of information and the public
key is used to verify that it was signed by a specific private key (without actually knowing it).

There are variations of the RSA algorithm for both signing and encryption. We will focus on the
general algorithm first, and then we will take a look at the different variations used with JWTs.

Many cryptographic algorithms, and in particular RSA, are based on the relative difficulty of
performing certain mathematical operations. RSA picks the integer factorization7 as its main
mathematical tool. Integer factorization is the mathematical problem that attempts to find numbers
that multiplied among themselves yield the original number as result. In other words, an integer’s
factors are a set of pairs of integers that when multiplied yield the original integer.

integer = factor_1 x factor_2

This problem might seem easy at first. And for small numbers, it is. Take for instance the number
35:

35 = 7 x 5

By knowing the multiplication tables of either 7 or 5 it is easy to find two numbers that yield 35
when multiplied. A naive algorithm to find factors for an integer could be:

1. Let n be the number we want to factor.
2. Let x be a number between 2 (inclusive) and n / 2 (inclusive).
3. Divide n by x and check whether the remainder is 0. If it is, you have found one pair of factors

(x and the quotient).
4. Continue performing step 3 increasing x by 1 in each iteratior until x reaches its upper bound

n / 2. When it does, you have found all possible factors of n.

This is essentially the brute force approach to finding factors. As you can imagine, this algorithm
is terribly inefficient.

A better version of this algorithm is called trial division and sets stricter conditions
for x. In particular, it defines x’s upper bound as sqrt(n), and, rather than increase
x by 1 in each iteration, it makes x take the value of ever bigger prime numbers. It is
trivial to prove why these conditions make the algorithm more efficient while keeping it
correct (though out of scope for this text).

More efficient algorithms do exist, but, as efficient as they are, even with today’s computers, cer-
tain numbers are computationally infeasible to factor. The problem is compounded when certain

7https://en.wikipedia.org/wiki/Integer_factorization

73

https://en.wikipedia.org/wiki/Integer_factorization

numbers are chosen as n. For instance, if n is the result of multiplying two prime numbers8, it is
much harder to find its factors (of which those prime numbers are the only possible factors).

If n were the result of multiplying two non-prime numbers, it would be much easier to
find its factors. Why? Because non-prime numbers have divisors other than themselves
(by defintion), and these divisors are in turn divisors of any number multiplied with
them. In other words, any divisor to a factor of a number is also a factor of the number.
Or, in other terms, if n has non-prime factors, it has more than two factors. So, if
n is the result of multiplying two prime-numbers, it has exactly two factors (the least
possible number of factors without being a prime number itself). The lesser the number
of factors, the harder it is to find them.

When two different and big prime numbers are picked and then multiplied, the result is another
big number (called a semiprime). But this big number has an added special property: it is really
hard to factor. Even the most efficient factoring algorithms, such as the general number field sieve9,
cannot factor big numbers that are the result of multiplying big primes in reasonable time frames.
To give a sense of scale, in 2009 a 768-bit number (232 decimal digits) was factored10 after 2 years
of work by a cluster of computers. Typical applications of RSA make use of 2048-bit or bigger
numbers.

Shor’s algorithm11 is a special kind of factoring algorithm that could change things
drastically in the future. While most factoring algorithms are classical in nature (that
is, they operate on classical computers), Shor’s algorithm relies on quantum computers12.
Quantum computers take advantage of the nature of certain quantum phenomena to
speed up several classical operations. In particular, Shor’s algorithm could speed up
factorization, bringing its complexity into the realm of polynomial time complexity
(rather than exponential). This is much more efficient than any of the current classical
algorithms. It is speculated that if such algorithm were to be runnable on a quantum
computer, current RSA keys would become useless. A practical quantum computer as
required by Shor’s algorithm has not been developed yet, but this is an acive area of
research at the moment.

Although currently integer factorization is computationally infeasible for large semiprimes, there
is no mathematical proof that this should be the case. In other words, in the future there might
appear algorithms that solve integer factorization in reasonable timeframes. The same can be said
of RSA.

With this said, we can now focus on the actual algorithm. The basic principle is captured in this
expression:

(me)d≡m(mod n)

Figure 7.4: RSA basic expression
8https://en.wikipedia.org/wiki/Prime_number
9https://en.wikipedia.org/wiki/General_number_field_sieve

10http://eprint.iacr.org/2010/006
11https://en.wikipedia.org/wiki/Shor%27s_algorithm
12https://en.wikipedia.org/wiki/Quantum_computing

74

https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/General_number_field_sieve
http://eprint.iacr.org/2010/006
https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://en.wikipedia.org/wiki/Quantum_computing

It is computationally feasible to find three very large integers e, d and n that satisfy the equation
above. The algorithm relies on the difficulty of finding d when all other numbers are known. In
other words, this expression can be turned into a one-way function. d can then be considered the
private-key, while n and e are the public key.

7.2.2.1 Choosing e, d and n

1. Choose two distinct prime numbers p and q.
• A cryptographically secure random number generator should be used to pick candidates

for p and q. An insecure RNG can result in an attacker finding one of these numbers.
• As there is no way to randomly generate prime numbers, after two random numbers

are picked, they should pass a primality test. Deterministic primality checks can be
expensive, so some implementations rely on probabilistic methods. How probable it is
to find a false prime needs to be considered.

• p and q should be similar in magnitude but not identical, and should differ in length by
a few digits.

2. n is the result of p times q. This is the modulus from the equation above. Its number of bits
is the key length of the algorithm.

3. Compute Euler’s totient function13 for n. Since n is a semiprime number, this is as simple as:
n - (p + q - 1). We will call this value phi(n).

4. Choose an e that meets the following criteria:
• 1 < e < phi(n)
• e and phi(n) should be coprime

5. Pick a d that satisfies the following expression:

d≡e−1(mod φ(n))

Figure 7.5: RSA basic expression

The public key is composed of values n and e. The private key is composed of values n and d.
Values p, q and phi(n) should be discarded or kept secret, as they can be used to help in finding d.

From the equations above, it is evident that e and d are mathematically symmetric. We can rewrite
the equation from step 5 as:

d .e≡1(mod φ(n))

Figure 7.6: Symmetry between e and d

So now you are probably wondering how RSA is safe if we publish the values e and n; could’t we
use those values to find d? The thing about modular arithmetic is that there are multiple possible
solutions. As long as the d we pick satisfies the equation above, any value is valid. The bigger the
value, the harder it is to find it. So, RSA works as long as only one of the values e or d is known to

13https://en.wikipedia.org/wiki/Euler%27s_totient_function#Computing_Euler.27s_totient_function

75

https://en.wikipedia.org/wiki/Euler%27s_totient_function#Computing_Euler.27s_totient_function

public parties. This is also the reason one of those values is picked: the public value can be chosen
to be as small as possible. This speeds up computation without compromising the safety of the
algorithm.

7.2.2.2 Basic Signing

Signing in RSA is performed as follows:

1. A message digest is produced from the message to be signed by a hash function.
2. This digest is then raised to the power of d modulo n (which is part of the private key).
3. The result is attached to the message as the signature.

When a recipient holding the public key wants to verify the authenticity of the message, he or she
can reverse the operation as follows:

1. The signature is raised to the power of e modulo n. The resulting value is the reference digest
value.

2. A message digest is produced from the message using the same hash function as in the signing
step.

3. The results from step 1 and 2 are compared. If they match, the signing party must be in
possession of the private key.

This signature/verification scheme is known as “signature scheme with appendix” (SSA). This
scheme requires the original message to be available to verify the message. In other words, they do
not allow message recovery from the signature (message and signature remain separate).

7.2.2.3 RS256: RSASSA PKCS1 v1.5 using SHA-256

Now that we have a basic notion of how RSA works, we can focus on a specific variant: PKCS#1
RSASSA v1.5 using SHA-256, also known as RS256 in the JWA specification.

The Public Key Cryptography Standard #1 (PKCS #1)14 specification defines a series of primitives,
formats and encryption schemes based on the RSA algorithm. These elements work together to
provide a detailed implementation of RSA usable in modern computing platforms. RSASSA is one
of the schemes defined in it, and it allows the use of RSA for signatures.

7.2.2.3.1 Algorithm

To produce a signature:

1. Apply the EMSA-PKCS1-V1_5-ENCODE primitive to the message (an array of octets).
The result is the encoded message. This primitive makes use of a hash function (usually
a SHA family hash function such as SHA-256). This primitive accepts an expected encoded
message length. In this case, it will be the length in octets of the RSA number n (the key
length).

14https://www.ietf.org/rfc/rfc3447.txt

76

https://www.ietf.org/rfc/rfc3447.txt

2. Apply the OS2IP primitive to the encoded message. The result is the integer message
representative. OS2IP is the acronym for “Octet-String to Integer Primitive”.

3. Apply the RSASP1 primitive to the integer message representative using the private key.
The result is the integer signature representative.

4. Apply the I2OSP primitive to convert the integer signature representative to an array of
octets (the signature). I2OSP is the acronym for “Integer to Octet-String Primitive”.

A possible implementation in JavaScript, given the primitives mentioned above, could look like:

/**
* Produces a signature for a message using the RSA algorithm as defined
* in PKCS#1.
* @param {privateKey} RSA private key, an object with
* three members: size (size in bits), n (the modulus) and
* d (the private exponent), both bigInts
* (big-integer library).
* @param {hashFn} the hash function as required by PKCS#1,
* it should take a Uint8Array and return a Uint8Array
* @param {hashType} A symbol identifying the type of hash function passed.
* For now, only "SHA-256" is supported. See the "hashTypes"
* object for possible values.
* @param {message} A String or Uint8Array with arbitrary data to sign
* @return {Uint8Array} The signature as a Uint8Array
*/
export function sign(privateKey, hashFn, hashType, message) {

const encodedMessage =
emsaPkcs1v1_5(hashFn, hashType, privateKey.size / 8, message);

const intMessage = os2ip(encodedMessage);
const intSignature = rsasp1(privateKey, intMessage);
const signature = i2osp(intSignature, privateKey.size / 8);
return signature;

}

To verify a signature:

1. Apply the OS2IP primitive to the signature (an array of octets). This is the integer sig-
nature representative.

2. Apply the RSAVP1 primitive to the previous result. This primitive also takes the public
key as input. This is the integer message representative.

3. Apply the I2OSP primitive to the previous result. This primitive takes an expected size as
input. This size should match the length of the key’s modulus in number of octets. The result
is the encoded message.

4. Apply the EMSA-PKCS1-V1_5-ENCODE primitive to the message that is to be verified.
The result is another encoded message. This primitive makes use of a hash function (usually
a SHA family hash function such as SHA-256). This primitive accepts an expected encoded
message length. In this case, it will be the length in octets of the RSA number n (the key
length).

5. Compare both encoded messages (from steps 3 and 4). If they match, the signature is valid,

77

otherwise it is not.

In JavaScript:

/**
* Verifies a signature for a message using the RSASSA algorithm as defined
* in PKCS#1.
* @param {publicKey} RSA private key, an object with
* three members: size (size in bits), n (the modulus) and
* e (the public exponent), both bigInts
* (big-integer library).
* @param {hashFn} the hash function as required by PKCS#1,
* it should take a Uint8Array and return a Uint8Array
* @param {hashType} A symbol identifying the type of hash function passed.
* For now, only "SHA-256" is supported. See the "hashTypes"
* object for possible values.
* @param {message} A String or Uint8Array with arbitrary data to verify
* @param {signature} A Uint8Array with the signature
* @return {Boolean} true if the signature is valid, false otherwise.
*/
export function verifyPkcs1v1_5(publicKey,

hashFn,
hashType,
message,
signature) {

if(signature.length !== publicKey.size / 8) {
throw new Error('invalid signature length');

}

const intSignature = os2ip(signature);
const intVerification = rsavp1(publicKey, intSignature);
const verificationMessage = i2osp(intVerification, publicKey.size / 8);

const encodedMessage =
emsaPkcs1v1_5(hashFn, hashType, publicKey.size / 8, message);

return uint8ArrayEquals(encodedMessage, verificationMessage);
}

7.2.2.3.1.1 EMSA-PKCS1-v1_5 primitive

This primitive takes three elements:

• The message
• The intended length of the result
• And the hash function to use (which must be one of the options from step 2)

1. Apply the selected hash function to the message.

78

2. Produce the DER encoding for the following ASN.1 structure:

DigestInfo ::= SEQUENCE {
digestAlgorithm DigestAlgorithm,
digest OCTET STRING

}

Where digest is the result from step 1 and DigestAlgorithm is one of:

DigestAlgorithm ::=
AlgorithmIdentifier { {PKCS1-v1-5DigestAlgorithms} }

PKCS1-v1-5DigestAlgorithms ALGORITHM-IDENTIFIER ::= {
{ OID id-md2 PARAMETERS NULL }|
{ OID id-md5 PARAMETERS NULL }|
{ OID id-sha1 PARAMETERS NULL }|
{ OID id-sha256 PARAMETERS NULL }|
{ OID id-sha384 PARAMETERS NULL }|
{ OID id-sha512 PARAMETERS NULL }

}

3. If the requested length of the result is less than the result of step 3 plus 11 (reqLength <
step2Length + 11), then the primitive fails to produce the result and outputs an error message
(“intended encoded message length too short”).

4. Repeat the octet 0xFF the following number of times: requested length + step2Length -
3. This array of octets is called PS.

5. Produce the final encoded message (EM) as (|| is the concatenation operator):

EM = 0x00 || 0x01 || PS || 0x00 || step2Result

ASN.1 OIDs are usually defined in their own specifications. In other words, you will
not find the SHA-256 OID in the PKCS#1 spec. SHA-1 and SHA-2 OIDs are defined
in RFC 356015.

7.2.2.3.1.2 OS2IP primitive

The OS2IP primitive takes an array of octets and outputs an integer representative.

• Let X1, X2, …, Xn be the octets from first to last of the input.
• Compute the result as:

result=X1⋅256
n−1+X2⋅256

n−2+...+Xn−1⋅256+Xn

Figure 7.7: OS2IP result

7.2.2.3.1.3 RSASP1 primitive
15https://tools.ietf.org/html/rfc3560.html

79

https://tools.ietf.org/html/rfc3560.html

The RSASP1 primitive takes the private key and a message representative and produces a signature
representative.

• Let n and d be the RSA numbers for the private key.
• Let m be the message representative.

1. Check the message representative is in range: between 0 and n - 1.
2. Compute the result as follows:

s=md mod (n)

Figure 7.8: RSASP1 result

PKCS#1 defines an alternative, computationally convenient way of storing the private
key: rather than keeping n and d in it, a combination of different precomputed values for
certain operations are stored. These values can be directly used in certain operations
and can speed up computations significantly. Most private keys are stored this way.
Storing the private key as n and d is valid, though.

7.2.2.3.1.4 RSAVP1 primitive

The RSAVP1 primitive takes a public key and an integer signature representative and produces an
integer message representative.

• Let n and e be the RSA numbers for the public key.
• Let s be the integer signature representative.

1. Check the message representative is in range: between 0 and n - 1.
2. Compute the result as follows:

m= se mod (n)

Figure 7.9: RSAVP1 result

7.2.2.3.1.5 I2OSP primitive

The I2OSP primitive takes an integer representative and produces an array of octets.

• Let len be the expected length of the array of octets.
• Let x be the integer representative.

1. If x > 256len then the integer is too large and the arguments are wrong.
2. Compute the base-256 representation of the integer:

x=x1⋅256
len−1+x2⋅256

len−2+...+xlen−1⋅256+xlen

Figure 7.10: I2OSP decomposition

80

3. Take each xlen-i factor from each term in order. These are the octets for the result.

7.2.2.3.2 Sample code

Since RSA requires arbitrary precision arithmetic, we will be using the big-integer16 JavaScript
library.

The OS2IP and I2OSP primitives are rather simple:

function os2ip(bytes) {
let result = bigInt();

bytes.forEach((b, i) => {
// result += b * Math.pow(256, bytes.length - 1 - i);
result = result.add(

bigInt(b).multiply(
bigInt(256).pow(bytes.length - i - 1)

)
);

});

return result;
}

function i2osp(intRepr, expectedLength) {
if(intRepr.greaterOrEquals(bigInt(256).pow(expectedLength))) {

throw new Error('integer too large');
}

const result = new Uint8Array(expectedLength);
let remainder = bigInt(intRepr);
for(let i = expectedLength - 1; i >= 0; --i) {

const position = bigInt(256).pow(i);
const quotrem = remainder.divmod(position);
remainder = quotrem.remainder;
result[result.length - 1 - i] = quotrem.quotient.valueOf();

}

return result;
}

The I2OSP primitive essentially decomposes a number into its base 25617 components.

The RSASP1 primitive is essentially a single operation, and forms the basis of the algorithm:
16https://www.npmjs.com/package/big-integer
17https://en.wikipedia.org/wiki/Positional_notation

81

https://www.npmjs.com/package/big-integer
https://en.wikipedia.org/wiki/Positional_notation

function rsasp1(privateKey, intMessage) {
if(intMessage.isNegative() ||

intMessage.greaterOrEquals(privateKey.n)) {
throw new Error("message representative out of range");

}

// result = intMessage ^ d (mod n)
return intMessage.modPow(privateKey.d, privateKey.n);

}

For verifications, the RSAVP1 primitive is used instead:

export function rsavp1(publicKey, intSignature) {
if(intSignature.isNegative() ||

intSignature.greaterOrEquals(publicKey.n)) {
throw new Error("message representative out of range");

}

// result = intSignature ^ e (mod n)
return intSignature.modPow(publicKey.e, publicKey.n);

}

Finally, the EMSA-PKCS1-v1_5 primitive performs most of the hard work by transforming the mes-
sage into its encoded and padded representation.

function emsaPkcs1v1_5(hashFn, hashType, expectedLength, message) {
if(hashType !== hashTypes.sha256) {

throw new Error("Unsupported hash type");
}

const digest = hashFn(message, true);

// DER is a stricter set of BER, this (fortunately) works:
const berWriter = new Ber.Writer();
berWriter.startSequence();

berWriter.startSequence();
// SHA-256 OID
berWriter.writeOID("2.16.840.1.101.3.4.2.1");
berWriter.writeNull();
berWriter.endSequence();

berWriter.writeBuffer(Buffer.from(digest), ASN1.OctetString);
berWriter.endSequence();

// T is the name of this element in RFC 3447
const t = berWriter.buffer;

if(expectedLength < (t.length + 11)) {
throw new Error('intended encoded message length too short');

82

}

const ps = new Uint8Array(expectedLength - t.length - 3);
ps.fill(0xff);
assert.ok(ps.length >= 8);

return Uint8Array.of(0x00, 0x01, ...ps, 0x00, ...t);
}

For simplicity, only SHA-256 is supported. Adding other hash functions is as simple as adding the
right OIDs.

The signPkcs1v1_5 function puts all primitives together to perform the signature:

/**
* Produces a signature for a message using the RSA algorithm as defined
* in PKCS#1.
* @param {privateKey} RSA private key, an object with
* three members: size (size in bits), n (the modulus) and
* d (the private exponent), both bigInts
* (big-integer library).
* @param {hashFn} the hash function as required by PKCS#1,
* it should take a Uint8Array and return a Uint8Array
* @param {hashType} A symbol identifying the type of hash function passed.
* For now, only "SHA-256" is supported. See the "hashTypes"
* object for possible values.
* @param {message} A String or Uint8Array with arbitrary data to sign
* @return {Uint8Array} The signature as a Uint8Array
*/
export function signPkcs1v1_5(privateKey, hashFn, hashType, message) {

const encodedMessage =
emsaPkcs1v1_5(hashFn, hashType, privateKey.size / 8, message);

const intMessage = os2ip(encodedMessage);
const intSignature = rsasp1(privateKey, intMessage);
const signature = i2osp(intSignature, privateKey.size / 8);
return signature;

}

To use this to sign JWTs, a simple wrapper is necessary:

export default function jwtEncode(header, payload, privateKey) {
if(typeof header !== 'object' || typeof payload !== 'object') {

throw new Error('header and payload must be objects');
}

header.alg = 'RS256';

const encHeader = b64(JSON.stringify(header));
const encPayload = b64(JSON.stringify(payload));

83

const jwtUnprotected = `${encHeader}.${encPayload}`;
const signature = b64(

pkcs1v1_5.sign(privateKey,
msg => sha256(msg, true),
hashTypes.sha256, stringToUtf8(jwtUnprotected)));

return `${jwtUnprotected}.${signature}`;
}

This function is very similar to the jwtEncode function for HS256 shown in the HMAC section.

Verification is just as simple:

/**
* Verifies a signature for a message using the RSASSA algorithm as defined
* in PKCS#1.
* @param {publicKey} RSA private key, an object with
* three members: size (size in bits), n (the modulus) and
* e (the public exponent), both bigInts
* (big-integer library).
* @param {hashFn} the hash function as required by PKCS#1,
* it should take a Uint8Array and return a Uint8Array
* @param {hashType} A symbol identifying the type of hash function passed.
* For now, only "SHA-256" is supported. See the "hashTypes"
* object for possible values.
* @param {message} A String or Uint8Array with arbitrary data to verify
* @param {signature} A Uint8Array with the signature
* @return {Boolean} true if the signature is valid, false otherwise.
*/
export function verifyPkcs1v1_5(publicKey,

hashFn,
hashType,
message,
signature) {

if(signature.length !== publicKey.size / 8) {
throw new Error('invalid signature length');

}

const intSignature = os2ip(signature);
const intVerification = rsavp1(publicKey, intSignature);
const verificationMessage = i2osp(intVerification, publicKey.size / 8);

const encodedMessage =
emsaPkcs1v1_5(hashFn, hashType, publicKey.size / 8, message);

return uint8ArrayEquals(encodedMessage, verificationMessage);
}

84

To use this to verify JWTs, a simple wrapper is necessary:

export function jwtVerifyAndDecode(jwt, publicKey) {
if(!isString(jwt)) {

throw new TypeError('jwt must be a string');
}

const split = jwt.split('.');
if(split.length !== 3) {

throw new Error('Invalid JWT format');
}

const header = JSON.parse(unb64(split[0]));
if(header.alg !== 'RS256') {

throw new Error(`Wrong algorithm: ${header.alg}`);
}

const jwtUnprotected = stringToUtf8(`${split[0]}.${split[1]}`);
const valid = verifyPkcs1v1_5(publicKey,

msg => sha256(msg, true),
hashTypes.sha256,
jwtUnprotected,
base64.decode(split[2]));

return {
header: header,
payload: JSON.parse(unb64(split[1])),
valid: valid

};
}

For simplicity, the private and public keys must be passed as JavaScript objects with two separate
numbers: the modulus (n) and the private exponent (d) for the private key, and the modulus (n)
and the public exponent (e) for the public key. This is in contrast to the usual PEM Encoded18

format. See the rs256.js file for more details.

It is possible to use OpenSSL to export these numbers from a PEM key.

openssl rsa -text -noout -in testkey.pem

OpenSSL can also be used to generate a RSA key from scratch:

openssl genrsa -out testkey.pem 2048

You can then export the numbers from PEM format using the command shown above.

The private-key numbers embedded in the testkey.js file are from the testkey.pem file in
the samples directory accompanying this handbook. The corresponding public key is in the
pubtestkey.pem file.

18https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail

85

https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail

Copy the output of running the rs256.js sample19 into the JWT area at JWT.io20. Then copy
the contents of pubtestkey.pem to the public-key area in the same page and the JWT will be
successfully validated.

7.2.2.4 PS256: RSASSA-PSS using SHA-256 and MGF1 with SHA-256

RSASSA-PSS is another signature scheme with appendix based on RSA. “PSS” stands for Proba-
bilistic Signature Scheme, in contrast with the usual deterministic approach. This scheme makes
use of a cryptographically secure random number generator. If a secure RNG is not available, the
resulting signature and verification operations provide a level of security comparable to determin-
istic approaches. This way RSASSA-PSS results in a net improvement over PKCS v1.5 signatures
for best case scenarios. In the wild, however, both PSS and PKCS v1.5 schemes remain unbroken.

RSASSA-PSS is defined in Public Key Cryptography Standard #1 (PKCS #1)21 and is not available
in earlier versions of the standard.

7.2.2.4.1 Algorithm

To produce a signature:

1. Apply the EMSA-PSS-ENCODE primitive to the message. The primitive takes a param-
eter that should be the number of bits in the modulus of the key minus 1. The result is the
encoded message.

2. Apply the OS2IP primitive to the encoded message. The result is the integer message
representative. OS2IP is the acronym for “Octet-String to Integer Primitive”.

3. Apply the RSASP1 primitive to the integer message representative using the private key.
The result is the integer signature representative.

4. Apply the I2OSP primitive to convert the integer signature representative to an array of
octets (the signature). I2OSP is the acronym for “Integer to Octet-String Primitive”.

A possible implementation in JavaScript, given the primitives mentioned above, could look like:

export function signPss(privateKey, hashFn, hashType, message) {
if(hashType !== hashTypes.sha256) {

throw new Error('unsupported hash type');
}

const encodedMessage = emsaPssEncode(hashFn,
hashType,
mgf1.bind(null, hashFn),
256 / 8, //size of hash
privateKey.size - 1,
message);

const intMessage = os2ip(encodedMessage);
19https://github.com/auth0/jwt-handbook-samples/blob/master/rs256.js
20https://jwt.io
21https://www.ietf.org/rfc/rfc3447.txt

86

https://github.com/auth0/jwt-handbook-samples/blob/master/rs256.js
https://jwt.io
https://www.ietf.org/rfc/rfc3447.txt

const intSignature = rsasp1(privateKey, intMessage);
const signature = i2osp(intSignature, privateKey.size / 8);
return signature;

}

To verify a signature:

1. Apply the OS2IP primitive to the signature (an array of octets). This is the integer sig-
nature representative.

2. Apply the RSAVP1 primitive to the previous result. This primitive also takes the public
key as input. This is the integer message representative.

3. Apply the I2OSP primitive to the previous result. This primitive takes an expected size as
input. This size should match the length of the key’s modulus in number of octets. The result
is the encoded message.

4. Apply the EMSA-PSS-VERIFY primitive to the message that is to be verified and the
result of the previous step. This primitive outputs whether the signature is valid or not. This
primitive makes use of a hash function (usually a SHA family hash function such as SHA-256).
The primitive takes a parameter that should be the number of bits in the modulus of the key
minus 1.

export function verifyPss(publicKey, hashFn, hashType, message, signature) {
if(signature.length !== publicKey.size / 8) {

throw new Error('invalid signature length');
}

const intSignature = os2ip(signature);
const intVerification = rsavp1(publicKey, intSignature);
const verificationMessage =

i2osp(intVerification, Math.ceil((publicKey.size - 1) / 8));

return emsaPssVerify(hashFn,
hashType,
mgf1.bind(null, hashFn),
256 / 8,
publicKey.size - 1,
message,
verificationMessage);

}

7.2.2.4.1.1 MGF1: the mask generation function

Mask generation functions take input of any length and produce output of variable length. Like hash
functions, they are deterministic: they produce the same output for the same input. In contrast
to hash functions, though, the length of the output is variable. The Mask Generation Function 1
(MGF1) algorithm is defined in Public Key Cryptography Standard #1 (PKCS #1)22.

22https://www.ietf.org/rfc/rfc3447.txt

87

https://www.ietf.org/rfc/rfc3447.txt

MGF1 takes a seed value and the intended length of the output as inputs. The maximum length of
the output is defined as 232. MGF1 uses internally a configurable hash function. PS256 specifies this
hash function as SHA-256.

1. If the intended length is bigger than 232, stop with error “mask too long”.
2. Iterate from 0 to the ceiling of the intended length divided the length of the hash function

output minus 1 (ceiling(intendedLength / hashLength) - 1) doing the following opera-
tions:

1. Let c = i2osp(counter, 4) where counter is the current value of the iteration counter.
2. Let t = t.concat(hash(seed.concat(c))) where t is preserved between iterations,

hash is the selected hash function (SHA-256) and seed is the input seed value.
3. Output the leftmost intended length octets from the last value of t as the result of the

function.

7.2.2.4.1.2 EMSA-PSS-ENCODE primitive

The primitive takes two elements:

• The message to be encoded as an octet sequence.
• The intended maximum length of the result in bits.

This primitive can be parameterized by the following elements:

• A hash function. In the case of PS256 this SHA-256.
• A mask generation function. In the case of PS256 this is MGF1.
• An intended length for the salt used internally.

These parameters are all specified by PS256, so they are not configurable and for the purposes of
this description are considered constants.

Note that the intended length used as input is expressed in bits. For the following examples,
consider:

const intendedLength = Math.ceil(intendedLengthBits / 8);

1. If the input is bigger than the maximum length of the hash function, stop. If not, apply the
hash function to the message.

const hashed1 = sha256(inputMessage);

2. If the intended length of the message is less than the length of the hash plus the length of the
salt plus 2, stop with an error.

if(intendedLength < (hashed1.length + intendedSaltLength + 2)) {
throw new Error('Encoding error');

}

3. Generate a random octet sequence of the length of the salt.
4. Concatenate eight zero-valued octets with the hash of the message and the salt.

const m = [0,0,0,0,0,0,0,0, ...hashed1, ...salt];

5. Apply the hash function to the result of the previous step.

88

const hashed2 = sha256(m);

6. Generate a sequence of zero-valued octets of length: intended maximum length of result minus
salt length minus hash length minus 2.

const ps = new Array(intendedLength - intendedSaltLength - 2).fill(0);

7. Concatenate the result of the previous step with the octet 0x01 and the salt.

const db = [...ps, 0x01, ...salt];

8. Apply the mask generation function to the result of step 5 and set the intended length of
this function as the length of the result from step 7 (the mask generation function accepts an
intended length parameter).

const dbMask = mgf1(hashed2, db.length);

9. Compute the result of applying the XOR operation to the results of steps 7 and 8.

const maskedDb = db.map((value, index) => {
return value ^ dbMask[index];

});

10. If the length of the result of the previous operation is not a multiple of 8, find the difference
in number of bits to make it a multiple of 8 by subtracting bits, then set this number of bits
to 0 beginning from the left.

const zeroBits = 8 * intendedLength - intendedLengthBits;
const zeroBitsMask = 0xFF >>> zeroBits;
maskedDb[0] &= zeroBitsMask;

11. Concatenate the result of the previous step with the result of step 5 and the octet 0xBC. This
is the result.

const result = [...maskedDb, ...hashed2, 0xBC];

7.2.2.4.1.3 EMSA-PSS-VERIFY primitive

The primitive takes three elements:

• The message to be verified.
• The signature as an encoded integer message.
• The intended maximum length of the encoded integer message.

This primitive can be parameterized by the following elements:

• A hash function. In the case of PS256 this SHA-256.
• A mask generation function. In the case of PS256 this is MGF1.
• An intended length for the salt used internally.

These parameters are all specified by PS256, so they are not configurable and for the purposes of
this description are considered constants.

89

Note that the intended length used as input is expressed in bits. For the following examples,
consider:

const expectedLength = Math.ceil(expectedLengthBits / 8);

1. Hash the message to be verified using the selected hash function.

const digest1 = hashFn(message, true);

2. If the expected length is smaller than the hash length plus the salt length plus 2, consider the
signature invalid.

if(expectedLength < (digest1.length + saltLength + 2)) {
return false;

}

3. Check that the last byte of the encoded message of the signature has the value of 0xBC

if(verificationMessage[verificationMessage.length - 1] !== 0xBC) {
return false;

}

4. Split the encoded message into two elements. The first element has a length of
expectedLength - hashLength - 1. The second element starts at the end of the
first and has a length of hashLength.

const maskedLength = expectedLength - digest1.length - 1;
const masked = verificationMessage.subarray(0, maskedLength);
const digest2 = verificationMessage.subarray(maskedLength,

maskedLength + digest1.length);

5. Check that the leftmost 8 * expectedLength - expectedLengthBits (the expected length
in bits minus the requested length in bits) bits of masked are 0.

const zeroBits = 8 * expectedLength - expectedLengthBits;
const zeroBitsMask = 0xFF >>> zeroBits;
if((masked[0] & (~zeroBitsMask)) !== 0) {

return false;
}

6. Pass the second element extracted from step 4 (the digest) to the selected MGF function.
Request the result to have a length of expectedLength - hashLength - 1.

const dbMask = mgf(maskedLength, digest2);

7. For each byte from first element extracted in step 4 (masked) apply the XOR function using
the corresponding byte from the element computed in the last step (dbMask).

const db = new Uint8Array(masked.length);
for(let i = 0; i < db.length; ++i) {

db[i] = masked[i] ^ dbMask[i];
}

90

8. Set the leftmost 8 * expectedLength - expectedLengthBits bits from the first byte in the
element computed in the last step to 0.

const zeroBits = 8 * expectedLength - expectedLengthBits;
const zeroBitsMask = 0xFF >>> zeroBits;
db[0] &= zeroBitsMask;

9. Check that the leftmost expectedLength - hashLength - saltLength - 2 bytes of the el-
ement computed in the last step are 0. Also check that the first element after the group of
zeros is 0x01.

const zeroCheckLength = expectedLength - (digest1.length + saltLength + 2);
if(!db.subarray(0, zeroCheckLength).every(v => v === 0) ||

db[zeroCheckLength] !== 0x01) {
return false;

}

10. Extract the salt from the last saltLength octets of the element computed in the last step
(db).

const salt = db.subarray(db.length - saltLength);

11. Compute a new encoded message by concatenating eigth octets of value zero, the hash com-
puted in step 1, and the salt extracted in the last step.

const m = Uint8Array.of(0, 0, 0, 0, 0, 0, 0, 0, ...digest1, ...salt);

12. Compute the hash of the element computed in the last step.

const expectedDigest = hashFn(m, true);

13. Compare the element computed in the last step to the second element extracted in step 4. If
they match, the signature is valid, otherwise it is not.

return uint8ArrayEquals(digest2, expectedDigest);

7.2.2.4.2 Sample code

As expected of a variant of RSASSA, most of the code required for this algorithm is already present
in the implementation of RS256. The only differences are the additions of the EMSA-PSS-ENCODE,
EMSA-PSS-VERIFY, and MGF1 primitives.

export function mgf1(hashFn, expectedLength, seed) {
if(expectedLength > Math.pow(2, 32)) {

throw new Error('mask too long');
}

const hashSize = hashFn(Uint8Array.of(0), true).byteLength;
const count = Math.ceil(expectedLength / hashSize);
const result = new Uint8Array(hashSize * count);
for(let i = 0; i < count; ++i) {

const c = i2osp(bigInt(i), 4);

91

const value = hashFn(Uint8Array.of(...seed, ...c), true);
result.set(value, i * hashSize);

}
return result.subarray(0, expectedLength);

}

export function emsaPssEncode(hashFn,
hashType,
mgf,
saltLength,
expectedLengthBits,
message) {

const expectedLength = Math.ceil(expectedLengthBits / 8);

const digest1 = hashFn(message, true);
if(expectedLength < (digest1.length + saltLength + 2)) {

throw new Error('encoding error');
}

const salt = crypto.randomBytes(saltLength);
const m = Uint8Array.of(...(new Uint8Array(8)),

...digest1,

...salt);
const digest2 = hashFn(m, true);
const ps = new Uint8Array(expectedLength - saltLength - digest2.length - 2);
const db = Uint8Array.of(...ps, 0x01, ...salt);
const dbMask = mgf(db.length, digest2);
const masked = db.map((value, index) => value ^ dbMask[index]);

const zeroBits = 8 * expectedLength - expectedLengthBits;
const zeroBitsMask = 0xFF >>> zeroBits;
masked[0] &= zeroBitsMask;

return Uint8Array.of(...masked, ...digest2, 0xbc);
}

export function emsaPssVerify(hashFn,
hashType,
mgf,
saltLength,
expectedLengthBits,
message,
verificationMessage) {

const expectedLength = Math.ceil(expectedLengthBits / 8);

const digest1 = hashFn(message, true);
if(expectedLength < (digest1.length + saltLength + 2)) {

92

return false;
}

if(verificationMessage.length === 0) {
return false;

}

if(verificationMessage[verificationMessage.length - 1] !== 0xBC) {
return false;

}

const maskedLength = expectedLength - digest1.length - 1;
const masked = verificationMessage.subarray(0, maskedLength);
const digest2 = verificationMessage.subarray(maskedLength,

maskedLength + digest1.length);

const zeroBits = 8 * expectedLength - expectedLengthBits;
const zeroBitsMask = 0xFF >>> zeroBits;
if((masked[0] & (~zeroBitsMask)) !== 0) {

return false;
}

const dbMask = mgf(maskedLength, digest2);
const db = masked.map((value, index) => value ^ dbMask[index]);
db[0] &= zeroBitsMask;

const zeroCheckLength = expectedLength - (digest1.length + saltLength + 2);
if(!db.subarray(0, zeroCheckLength).every(v => v === 0) ||

db[zeroCheckLength] !== 0x01) {
return false;

}

const salt = db.subarray(db.length - saltLength);
const m = Uint8Array.of(0, 0, 0, 0, 0, 0, 0, 0, ...digest1, ...salt);
const expectedDigest = hashFn(m, true);

return uint8ArrayEquals(digest2, expectedDigest);
}

The complete example23 is available in the files ps256.js, rsassa.js, and pkcs.js. The private-
key numbers embedded in the testkey.js file are from the testkey.pem file in the samples directory
accompanying this handbook. The corresponding public key is in the pubtestkey.pem file. For
help in creating keys see the RS256 example.

23https://github.com/auth0/jwt-handbook-samples

93

https://github.com/auth0/jwt-handbook-samples

7.2.3 Elliptic Curve

Elliptic Curve (EC) algorithms, just like RSA, rely on a class of mathematical problems that are
intractable for certain conditions. Intractability refers to the possibility of finding a solution given
enough resources, but that, in practice, is hard to achieve. While RSA relies on the intractability
of the factoring problem24 (finding the prime factors of a big coprime number), elliptic curve
algorithms rely on the intractability of the elliptic curve discrete logarithm problem.

Elliptic curves are discribed by the following equation:

y2=x3+ax+b

Figure 7.11: Elliptic curve equation

By setting a and b to different values, we get the following sample curves:
24https://en.wikipedia.org/wiki/Integer_factorization

94

https://en.wikipedia.org/wiki/Integer_factorization

Figure 7.12: Some elliptic curves

Public domain image taken from Wikimedia.25

In contrast to RSA, elliptic-curve algorithms are defined for specific finite fields. Of interest for EC
cryptography are binary and prime fields. The JWA specification uses only prime fields, so we will
focus on these.

A field, in mathematical terms, is a set of elements for which the four basic arithmetic
operations are defined: subtraction, addition, multiplication, and division.

“Finite” means elliptic curve cryptography works on finite sets of numbers, rather than the infinite
set of real numbers.

25https://commons.wikimedia.org/wiki/File:EllipticCurveCatalog.svg

95

https://commons.wikimedia.org/wiki/File:EllipticCurveCatalog.svg

A prime field is a field that contains a prime number p of elements. All elements and arithmetic
operations are implemented modulo p (the prime number of elements).

By making the field finite, the algorithms used to perform mathematical operations change. In
particular, the discrete logarithm26 must be used instead of the ordinary logarithm. Logarithms
find the value of k for expressions of the following form:

ak=c
loga(c)=k

Figure 7.13: Exponential function

There is no known efficient, general purpose algorithm for computing the discrete logarithm. This
limitation makes the discrete logarithm ideal for cryptography. Elliptic curves, as used by cryptog-
raphy, exploit this limitation to provide secure asymmetric encryption and signature operations.

The intractability of the discrete logarithm problem depends on carefully choosing the parameters
of the field on which it is to be used. This means that for elliptic curve cryptography to be effective,
certain parameters must be chosen with great care. Elliptic curve algorithms have been the target
in past attacks due to misuse27.

An interesting aspect of Elliptic-Curve cryptography is that key sizes can be smaller while providing
a similar level of security compared to bigger keys used in RSA. This allows cryptography even on
memory limited devices. In general terms, a 256-bit elliptic-curve key is similar to a 3072-bit RSA
key in cryptographic strength.

7.2.3.1 Elliptic-Curve Arithmetic

For the purposes of implementing elliptic-curve signatures, it is necessary to implement elliptic-
curve arithmetic. The three basic operations are: point addition, point doubling, and point scalar
multiplication. All three operations result in valid points on the same curve.

7.2.3.1.1 Point Addition
26https://en.wikipedia.org/wiki/Discrete_logarithm
27https://safecurves.cr.yp.to/

96

https://en.wikipedia.org/wiki/Discrete_logarithm
https://safecurves.cr.yp.to/

P+Q≡R (mod q) (P≠Q)

(x p , y p)+(xq , yq)≡(xr , yr) (mod q)

λ≡
yq− y p
xq−x p

(mod q)

xr≡λ
2
−x p−xq (mod q)

yr≡λ(x p−xr)− y p (mod q)

Figure 7.14: Point addition

7.2.3.1.2 Point Doubling

P+Q≡R (mod q) (P=Q)

2P≡R (mod q)
(x p , y p)+(x p , y p)≡(xr , yr) (mod q)

λ≡
3 x p

2
+a

2 y p
(mod q)

xr≡λ
2
−2 x p(mod q)

yr≡λ(x p−xr)− y p(mod q)

Figure 7.15: Point doubling

7.2.3.1.3 Scalar Multiplication

For scalar multiplication, the factor k is decomposed into its binary representation.

kP≡R (mod q)
k=k0+2k1+2

2k2+…+2m km where [k0…km]∈{0,1}

Figure 7.16: Scalar multiplication

Then, the following algorithm is applied:

1. Let N be the point P.
2. Let Q be the point at infinity (0, 0).
3. For i from 0 to m do:

97

1. If k~i~ is 1 then let Q be the result of adding Q to N (elliptic-curve addition).
2. Let N be the result of doubling N (elliptic-curve doubling).

4. Return Q.

Sample implementation in JavaScript:

function ecMultiply(P, k, modulus) {
let N = Object.assign({}, p);
let Q = {

x: bigInt(0),
y: bigInt(0)

};

for(k = bigInt(k); !k.isZero(); k = k.shiftRight(1)) {
if(k.isOdd()) {

Q = ecAdd(Q, N, modulus);
}
N = ecDouble(N, modulus);

}

return Q;
}

One thing to note is that in modular arithmetic, division is implemented as the multiplication
between the numerator and the inverse of the divisor.

JavaScript versions of these operations can be found in the samples repository28 in the ecdsa.js
file. These naive implementations, though functional, are vulnerable to timing attacks. Production-
ready implementations use different algorithms that take these attacks into account.

7.2.3.2 Elliptic-Curve Digital Signature Algorithm (ECDSA)

The Elliptic-Curve Digital Signature Algorithm (ECDSA) was developed by a committee for the
American National Standards Institute (ANSI)29. The standard is X9.6330. The standard specifies
all the needed parameters for proper use of elliptic-curves for signatures in a secure way. The
JWA specification relies on this specification (and FIPS 186-431) for picking curve parameters and
specifying the algorithm.

For use with JWTs, JWA specifies that the input to signing algorithm is the Base64 encoded header
and payload, just like any other signing algorithm, but the result is two integers r and s rather
than one. These integers are to be converted to 32-byte sequences in big-endian order, which are
then concatenated to form a single 64-byte signature.

export default function jwtEncode(header, payload, privateKey) {
if(typeof header !== 'object' || typeof payload !== 'object') {

28https://github.com/auth0/jwt-handbook-samples/
29https://www.ansi.org/
30https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
31http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

98

https://github.com/auth0/jwt-handbook-samples/
https://www.ansi.org/
https://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.63-2011+(R2017)
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

throw new Error('header and payload must be objects');
}

header.alg = 'ES256';

const encHeader = b64(JSON.stringify(header));
const encPayload = b64(JSON.stringify(payload));
const jwtUnprotected = `${encHeader}.${encPayload}`;
const ecSignature = sign(privateKey, sha256,

sha256.hashType, stringToUtf8(jwtUnprotected));
const ecR = i2osp(ecSignature.r, 32);
const ecS = i2osp(ecSignature.s, 32);
const signature = b64(Uint8Array.of(...ecR, ...ecS));

return `${jwtUnprotected}.${signature}`;
}

This code is similar to what was used for RSA and HMAC signatures. The main difference lies in
converting the two signature numbers r and s into 32-byte octets. For this we can use the i2osp
function from PKCS, which we also used for RSA.

Checking the signature requires retrieving parameters r and s:

export function jwtVerifyAndDecode(jwt, publicKey) {
const header = JSON.parse(unb64(split[0]));
if(header.alg !== 'ES256') {

throw new Error(`Wrong algorithm: ${header.alg}`);
}

const jwtUnprotected = stringToUtf8(`${split[0]}.${split[1]}`);

const signature = base64.decode(split[2]);
const ecR = signature.slice(0, 32);
const ecS = signature.slice(32);
const ecSignature = {

r: os2ip(ecR),
s: os2ip(ecS)

};

const valid = verify(publicKey,
sha256,
sha256.hashType,
jwtUnprotected,
ecSignature);

return {
header: header,
payload: JSON.parse(unb64(split[1])),

99

valid: valid
};

}

Again, the procedure for checking the validity of the signature is similar to RSA and HMAC. In
this case, values r and s must be retrieved from the 64-byte JWT signature. The first 32 bytes are
the element r, and the remaining 32 bytes are the element s. To convert these values into numbers
we can use the os2ip primitive from PKCS.

7.2.3.2.1 Elliptic-Curve Domain Parameters

Elliptic-curve operations as used by ECDSA depend on a few key parameters:

• p or q: the prime used to define the prime field32 on which arithmetic operations are performed.
Prime field operations use modular arithmetic33.

• a: coefficient of x in the curve equation.
• b: constant in the curve equation (y-intercept).
• G: a valid curve point used as base point for elliptic-curve operations. The base point is used

in arithmetic operations to obtain other points on the curve.
• n: the order of base point G. This parameter is the number of valid points in the curve that

can be constructed by using point G as base point.

For elliptic-curve operations to be secure, these parameters must be chosen carefully. In the context
of JWA, there are only three curves that are considered valid: P-256, P-384, and P-521. These curves
are defined in FIPS 186-434 and other associated standards.

For our code sample, we will be using curve P-256:

const p256 = {
q: bigInt('00ffffffff00000001000000000000' +

'000000000000ffffffffffffffffff' +
'ffffff', 16),

// order of base point
n: bigInt('115792089210356248762697446949407573529996955224135760342' +

'422259061068512044369'),
// base point
G: {

x: bigInt('6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0' +
'f4a13945d898c296', 16),

y: bigInt('4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ece' +
'cbb6406837bf51f5', 16)

},
//a: bigInt(-3)
a: bigInt('00ffffffff00000001000000000000' +

'000000000000ffffffffffffffffff' +
32https://en.wikipedia.org/wiki/Finite_field
33https://en.wikipedia.org/wiki/Modular_arithmetic
34http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

100

https://en.wikipedia.org/wiki/Finite_field
https://en.wikipedia.org/wiki/Modular_arithmetic
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

'fffffc', 16),
b: bigInt('5ac635d8aa3a93e7b3ebbd55769886' +

'bc651d06b0cc53b0f63bce3c3e27d2' +
'604b', 16)

};

7.2.3.2.2 Public and Private Keys

Constructing public and private keys using elliptic curves is really simple.

A private key can be constructed by picking a random number between 1 and the order n of the
base point G. In other words:

const privateKey = bigInt.randBetween(1, p256.n);

That’s it! As simple as that.

The public key can be computed from the private key by multiplying the base point G with the
private key:

// ecMultiply is the elliptic-curve scalar multiplication operation
const publicKey = ecMultiply(G, privateKey);

In other words, the public key is a point on the elliptic-curve, while the private key is simply a
scalar value.

7.2.3.2.2.1 The Discrete Logarithm Problem

Given that derivation of the public key from the private key is simple, doing the opposite appears
to be simple as well. We want to find a number d such that G multiplied by it yields the public key
Q.

dG≡Q (mod q)
logG(Q)≡d (mod q)

Figure 7.17: Private key as the logarithm of public key

In the context of an additive group35 such as the prime field chosen for elliptic curves, computing k
is the discrete logarithm problem. There is no known general purpose algorithm that can compute
this efficiently. For 256-bit numbers like the ones used for curve P-256 the complexity is well beyond
current computational capabilities. This is where the strength of elliptic-curve cryptography lies.

7.2.3.2.3 ES256: ECDSA using P-256 and SHA-256

The signing algorithm itself is simple, and requires modular arithmetic and elliptic curve operations:
35https://crypto.stackexchange.com/questions/15075/is-the-term-elliptic-curve-discrete-logarithm-problem-a-misnomer

101

https://crypto.stackexchange.com/questions/15075/is-the-term-elliptic-curve-discrete-logarithm-problem-a-misnomer

1. Compute the digest of the message to sign using a cryptographically secure hash function.
Let this number be e.

2. Use a cryptographically secure random number generator to pick a number k in the range 1
to n - 1.

3. Mutiply the base point G with k (mod q).
4. Let r be the result of taking the x coordinate of the point from the previous step modulo the

order of G (n).
5. If r is zero repeat steps 2 to 5 until it is not zero.
6. Let d be the private key and s the result of:

s≡
dr+e
k

(mod n)

Figure 7.18: s

7. If s is zero, repeat steps 2 to 7 until it is not zero.

The signature is the tuple r and s. For the purposes of JWA, r and s are represented as two 32-byte
octet sequences concatenated (first r and then s).

Sample implementation:

export function sign(privateKey, hashFn, hashType, message) {
if(hashType !== hashTypes.sha256) {

throw new Error('unsupported hash type');
}

// Algorithm as described in ANS X9.62-1998, 5.3

const e = bigInt(hashFn(message), 16);

let r;
let s;
do {

let k;
do {

// Warning: use a secure RNG here
k = bigInt.randBetween(1, p256.nMin1);
const point = ecMultiply(p256.G, k, p256.q);
r = point.x.fixedMod(p256.n);

} while(r.isZero());

const dr = r.multiply(privateKey.d);
const edr = dr.add(e);
s = edr.multiply(k.modInv(p256.n)).fixedMod(p256.n);

} while(s.isZero());

return {

102

r: r,
s: s

};
}

Verification is just as simple. For a given signature (r,s):

1. Compute the digest of the message to sign using a cryptographically secure hash function.
Let this number be e.

2. Let c be multiplicative inverse of s modulo the order n.
3. Let u1 be e multiplied by c modulo n.
4. Let u2 be r multiplied by c modulo n.
5. Let point A be the base point G multiplied by u1 modulo q.
6. Let point B be the public key Q multiplied by u2 modulo q.
7. Let point C be the elliptic-curve addition of points A and B (modulo q).
8. Let v be the x coordinate of point C modulo n.
9. If v is equal to r the signature is valid, otherwise it is not.

Sample implementation:

export function verify(publicKey, hashFn, hashType, message, signature) {
if(hashType !== hashTypes.sha256) {

throw new Error('unsupported hash type');
}

if(signature.r.compare(1) === -1 || signature.r.compare(p256.nMin1) === 1 ||
signature.s.compare(1) === -1 || signature.s.compare(p256.nMin1) === 1) {
return false;

}

// Check whether the public key is a valid curve point
if(!isValidPoint(publicKey.Q)) {

return false;
}

// Algorithm as described in ANS X9.62-1998, 5.4

const e = bigInt(hashFn(message), 16);

const c = signature.s.modInv(p256.n);
const u1 = e.multiply(c).fixedMod(p256.n);
const u2 = signature.r.multiply(c).fixedMod(p256.n);

const pointA = ecMultiply(p256.G, u1, p256.q);
const pointB = ecMultiply(publicKey.Q, u2, p256.q);
const point = ecAdd(pointA, pointB, p256.q);

const v = point.x.fixedMod(p256.n);

103

return v.compare(signature.r) === 0;
}

An important part of the algorithm that is often overlooked is the check of validity of the public
key. This has been a source of attacks in the past36. If an attacker controls the public key that a
verifying party uses for validation of the message signature, and the public key is not validated as a
point on the curve, the attacker can craft a special public key that can be used to forge messages.

This sample implementation can be found in the samples repository37 in the ecdsa.js file.

7.3 Future Updates

The JWA specification has many more algorithms. In future versions of this handbook we will go
over the remaining algorithms.

36http://blogs.adobe.com/security/2017/03/critical-vulnerability-uncovered-in-json-encryption.html
37https://github.com/auth0/jwt-handbook-samples/

104

http://blogs.adobe.com/security/2017/03/critical-vulnerability-uncovered-in-json-encryption.html
https://github.com/auth0/jwt-handbook-samples/

	Special Thanks
	Introduction
	What is a JSON Web Token?
	What problem does it solve?
	A little bit of history

	Practical Applications
	Client-side/Stateless Sessions
	Security Considerations
	Signature Stripping
	Cross-Site Request Forgery (CSRF)
	Cross-Site Scripting (XSS)

	Are Client-Side Sessions Useful?
	Example

	Federated Identity
	Access and Refresh Tokens
	JWTs and OAuth2
	JWTs and OpenID Connect
	OpenID Connect Flows and JWTs

	Example
	Setting up Auth0 Lock for Node.js Applications

	JSON Web Tokens in Detail
	The Header
	The Payload
	Registered Claims
	Public and Private Claims

	Unsecured JWTs
	Creating an Unsecured JWT
	Sample Code

	Parsing an Unsecured JWT
	Sample Code

	JSON Web Signatures
	Structure of a Signed JWT
	Algorithm Overview for Compact Serialization
	Practical Aspects of Signing Algorithms
	JWS Header Claims
	JWS JSON Serialization
	Flattened JWS JSON Serialization

	Signing and Validating Tokens
	HS256: HMAC + SHA-256
	RS256: RSASSA + SHA256
	ES256: ECDSA using P-256 and SHA-256

	JSON Web Encryption (JWE)
	Structure of an Encrypted JWT
	Key Encryption Algorithms
	Key Management Modes
	Content Encryption Key (CEK) and JWE Encryption Key

	Content Encryption Algorithms
	The Header
	Algorithm Overview for Compact Serialization
	JWE JSON Serialization
	Flattened JWE JSON Serialization

	Encrypting and Decrypting Tokens
	Introduction: Managing Keys with node-jose
	AES-128 Key Wrap (Key) + AES-128 GCM (Content)
	RSAES-OAEP (Key) + AES-128 CBC + SHA-256 (Content)
	ECDH-ES P-256 (Key) + AES-128 GCM (Content)
	Nested JWT: ECDSA using P-256 and SHA-256 (Signature) + RSAES-OAEP (Encrypted Key) + AES-128 CBC + SHA-256 (Encrypted Content)
	Decryption

	JSON Web Keys (JWK)
	Structure of a JSON Web Key
	JSON Web Key Set

	JSON Web Algorithms
	General Algorithms
	Base64
	Base64-URL
	Sample Code

	SHA

	Signing Algorithms
	HMAC
	HMAC + SHA256 (HS256)

	RSA
	Choosing e, d and n
	Basic Signing
	RS256: RSASSA PKCS1 v1.5 using SHA-256
	Algorithm
	EMSA-PKCS1-v1_5 primitive
	OS2IP primitive
	RSASP1 primitive
	RSAVP1 primitive
	I2OSP primitive

	Sample code

	PS256: RSASSA-PSS using SHA-256 and MGF1 with SHA-256
	Algorithm
	MGF1: the mask generation function
	EMSA-PSS-ENCODE primitive
	EMSA-PSS-VERIFY primitive

	Sample code

	Elliptic Curve
	Elliptic-Curve Arithmetic
	Point Addition
	Point Doubling
	Scalar Multiplication

	Elliptic-Curve Digital Signature Algorithm (ECDSA)
	Elliptic-Curve Domain Parameters
	Public and Private Keys
	The Discrete Logarithm Problem

	ES256: ECDSA using P-256 and SHA-256

	Future Updates

